SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Juntikka R, Kleiven S, Hallstrom S. Int. J. Crashworthiness 2004; 9(4): 365-379.

Affiliation

Royal Institute of Technology and Karolinska Institute

Copyright

(Copyright © 2004, Informa - Taylor and Francis Group)

DOI

10.1533/ijcr.2004.0296

PMID

unavailable

Abstract

This paper describes optimizations of material properties for a bonnet-like plate using finite element calculations and the Euro-NCAP pedestrian head impact test. Four different head models were used for the impact simulations, a Euro-NCAP dummy head, a Hybrid III dummy head and two biomechanical head models exhibiting different mechanical properties for the brain tissue. The objective function was to minimize the displacement of the bonnet plate while satisfying constraints on the head injury criterion (HIC), the resultant contact force and, for the human head models, the strain in the brain tissue. An investigation was also conducted of the kinematics of the head models during impact, evaluating the energy distribution and the apparent mass. The analysis gave at hand that optimization of the plate with respect to impact with the Euro-NCAP and Hybrid III head models reached substantially different results compared to impact with the biomechanical head models. For the latter case, the stiffness of the brain tissue influenced which constraints were active in the final solution. The investigation of the kinematics at impact showed that a substantial portion of energy was confined within the brain during impact for the biomechanical head models. The apparent mass at impact coincided with the actual mass for the rigid dummy heads while for the human head models it was roughly the mass of the skull only

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print