SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Day BL, Marsden JF, Ramsay E, Mian OS, Fitzpatrick RC. J. Physiol. 2010; 588(Pt 4): 671-682.

Affiliation

UCL Institute of Neurology;

Copyright

(Copyright © 2010, The Physiological Society, Publisher John Wiley and Sons)

DOI

10.1113/jphysiol.2009.181768

PMID

20026614

PMCID

PMC2828139

Abstract

The left and right vestibular organs always transduce the same signal of head movement, and with natural stimuli can only be activated simultaneously. To investigate how signals from the left and right vestibular organs are integrated to control human balance we electrically modulated the firing of vestibular afferents from each labyrinth independently and measured the resulting balance responses. Stimulation of one side at a time (monaural) showed that individual leg muscles receive equal inputs from the two labyrinths even though a single labyrinth appeared capable of signalling 3-D head motion. To deduce principles of left-right integration, balance responses to simultaneous stimulation of both sides (binaural) were compared with responses to monaural stimuli. The binaural whole-body response direction was compatible with vector summation of the left and right monaural responses. The binaural response magnitude, however, was only 64-74% that predicted by the monaural sum. This probably reflects a central non-linearity between vestibular input and motor output because stimulation of just one labyrinth revealed a power law relationship between stimulus current and response size with exponents 0.56 (force) and 0.51 (displacement). Thus, doubling total signal magnitude either by doubling monaural current or by binaural stimulation produced equivalent responses. We conclude that both labyrinths provide independent estimates of head motion that are summed vectorially and transformed non-linearly into motor output. The former process improves signal-to-noise and reduces artifactual common-mode changes, while the latter enhances responses to small signals, all critical for detecting the small head movements needed to control human balance.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print