SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Feng Y, Abney TM, Okamoto RJ, Pless RB, Genin GM, Bayly PV. J. R. Soc. Interface 2010; 7(53): 1677-1688.

Affiliation

Department of Mechanical, Aerospace and Structural Engineering, St Louis 1 Brookings Drive, Box 1185, St Louis, MO 63130, USA.

Copyright

(Copyright © 2010, Royal Society)

DOI

10.1098/rsif.2010.0210

PMID

20504801

PMCID

PMC2988269

Abstract

This study describes the measurement of fields of relative displacement between the brain and the skull in vivo by tagged magnetic resonance imaging and digital image analysis. Motion of the brain relative to the skull occurs during normal activity, but if the head undergoes high accelerations, the resulting large and rapid deformation of neuronal and axonal tissue can lead to long-term disability or death. Mathematical modelling and computer simulation of acceleration-induced traumatic brain injury promise to illuminate the mechanisms of axonal and neuronal pathology, but numerical studies require knowledge of boundary conditions at the brain-skull interface, material properties and experimental data for validation. The current study provides a dense set of displacement measurements in the human brain during mild frontal skull impact constrained to the sagittal plane. Although head motion is dominated by translation, these data show that the brain rotates relative to the skull. For these mild events, characterized by linear decelerations near 1.5g (g = 9.81 m s(-2)) and angular accelerations of 120-140 rad s(-2), relative brain-skull displacements of 2-3 mm are typical; regions of smaller displacements reflect the tethering effects of brain-skull connections. Strain fields exhibit significant areas with maximal principal strains of 5 per cent or greater. These displacement and strain fields illuminate the skull-brain boundary conditions, and can be used to validate simulations of brain biomechanics.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print