SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Medina M, Sherry L, Feary M. Transp. Res. C Emerg. Technol. 2010; 18(6): 921-929.

Copyright

(Copyright © 2010, Elsevier Publishing)

DOI

10.1016/j.trc.2010.03.006

PMID

unavailable

Abstract

The increasing span of control of Air Traffic Control enterprise automation (e.g. Flight Schedule Monitor, Departure Flow Management), along with lean-processes and pay-for-performance business models, has placed increased emphasis on operator training time and error rates. There are two traditional approaches to the design of human-computer interaction (HCI) to minimize training time and reduce error rates: (1) experimental user testing provides the most accurate assessment of training time and error rates, but occurs too late in the development cycle and is cost prohibitive, (2) manual review methods (e.g. cognitive walkthrough) can be used earlier in the development cycle, but suffer from poor accuracy and poor inter-rater reliability. Recent development of "affordable" human performance models provide the basis for the automation of task analysis and HCI design to obtain low cost, accurate, estimates of training time and error rates early in the development cycle.
This paper describes a usability/HCI analysis tool that this intended for use by design engineers in the course of their software engineering duties. The tool computes estimates of trials-to-mastery (i.e. time to competence for training) and the probability of failure-to-complete for each task. The HCI required to complete a task on the automation under development is entered into the web-based tool via a form. Assessments of the salience of visual cues to prompt operator actions for the proposed design are used to compute training time and error rates. The web-based tool enables designers in multiple locations to review and contribute to the design. An example analysis is provided along with a discussion of the limitations of the tool and directions for future research.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print