SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Zhang X, Chaffin D. Ergonomics 2000; 43(9): 1314-1330.

Affiliation

Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign, 61801, USA. xudong@uiuc.edu

Copyright

(Copyright © 2000, Informa - Taylor and Francis Group)

DOI

unavailable

PMID

11014754

Abstract

A three-dimensional dynamic posture prediction model for simulating in-vehicle seated reaching movements is presented. The model employs a four-segment 7-degrees-of-freedom linkage structure to represent the torso, clavicle and right upper extremity. It relies on an optimization-based differential inverse kinematics approach to estimate a set of four weighting parameters that quantify a time-constant, inter-segment motion apportionment strategy. In the development phase, 100 seated reaching movements performed by 10 subjects towards five typical in-vehicle targets were modelled, resulting in 100 sets of weighting parameters. Statistical analysis was then conducted to relate these parameters to target and individual attributes. In the validation phase, the generalized model, with parameter values statistically synthesized, was applied to novel data sets containing 700 different reaching movements (towards different targets and/or by different subjects). The results demonstrated the model's ability to generate close representations in prediction: the overall mean time-averaged error in joint angle was 5.2 degrees, and the median was 4.7 degrees, excluding reaches towards two extreme targets (for which modelling errors were excessive). The model's general success in prediction and its unique characteristics led to implications with regard to the performance and underlying control strategies of human reaching movements.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print