SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Modig F, Fransson PA, Magnusson M, Patel M. Alcohol 2012; 46(1): 75-88.

Affiliation

Department of Clinical Sciences, Lund, Lund University, Lund S-221 85, Sweden.

Copyright

(Copyright © 2012, Elsevier Publishing)

DOI

10.1016/j.alcohol.2011.06.001

PMID

21816558

Abstract

Alcohol-related falls are recognized as a major contributor to the occurrence of traumatic brain injury. The control of upright standing balance is complex and composes of contributions from several partly independent mechanisms such as appropriate information from multiple sensory systems and correct feedback and feed forward movement control. Analysis of multisegmented body movement offers a rarely used option for detecting the fine motor problems associated with alcohol intoxication. The study aims were to investigate whether (1) alcohol intoxication at 0.06 and 0.10% blood alcohol concentration (BAC) affected the body movements under unperturbed and perturbed standing; and (2) alcohol affected the ability for sensorimotor adaptation. Body movements were recorded in 25 participants (13 women and 12 men, mean age 25.1 years) at five locations (ankle, knee, hip, shoulder, and head) during quiet standing and during balance perturbations from pseudorandom pulses of calf muscle vibration over 200s with eyes closed or open. Tests were performed at 0.00, 0.06, and 0.10% BAC. The study revealed several significant findings: (1) an alcohol dose-specific effect; (2) a direction-specific stability decrease from alcohol intoxication; (3) a movement pattern change related to the level of alcohol intoxication during unperturbed standing and perturbed standing; (4) a sensorimotor adaptation deterioration with increased alcohol intoxication; and (5) that vision provided a weaker contribution to postural control during alcohol intoxication. Hence, alcohol intoxication at 0.06 and 0.10% BAC causes a complex multifaceted deterioration of human postural control.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print