SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Metin M, Guclu R. J. Vib. Control 2011; 17(10): 1525-1539.

Copyright

(Copyright © 2011, SAGE Publishing)

DOI

10.1177/1077546310381099

PMID

unavailable

Abstract

This study represents the comparison of fuzzy logic and PID controlled active suspensions' performances on an 11 degree-of-freedom rail vehicle model. First, a PID controller and then a fuzzy logic controller (FLC) are designed for the same model separately to obtain a comfortable travel for the users. Since the PID control method can be applied easily and is well known, it has an important place in control applications and a FLC is preferred because of its superior performance in active vibration control. Controllers are used to secondary suspension systems placed between rail vehicle and bogie. This vehicle is modeled as a lumped parameter system which consists of a body, bogie, primary and secondary suspensions and rigid wheels. The model has been designed to take into account the complexity of wheel-rail contact. For the purpose of observing both controllers' performances, two different track irregularities are considered as disruptive effects of the system. All parameters for both controllers are achieved by the use of genetic algorithm for the same simulation conditions and performance criteria. At the end of the study, time history and frequency response for accelerations and displacements of the rail vehicle are presented for both uncontrolled and controlled systems. Performances of the compared approaches are discussed.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print