SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Lu SB, Li YN, Choi SB. Proc. Inst. Mech. Eng. Pt. D J. Automobile Eng. 2012; 226(4): 479-493.

Copyright

(Copyright © 2012, Institution of Mechanical Engineers, Publisher SAGE Publishing)

DOI

10.1177/0954407011421850

PMID

unavailable

Abstract

The current paper presents an integrated control strategy to improve rollover stability of a vehicle by considering chassis key subsystems. In order to achieve this goal, a quantitative study on control authority and the effective working region of active front steering (AFS), active braking (AB), and active suspension (AS) control for rollover prevention is carried out based on a full vehicle model which includes the non-linear tyre model and the effect of dynamic coupling. After investigating the control authority and effective working area of AFS, AB, and AS subsystems, an integrated control strategy for rollover stability is formulated. In this formulating process, the control strategy for each subsystem is also designed by considering its contribution to rollover stability. A comparison between the proposed integrated control strategy and the single control action of each subsystem is made through computer simulation. It is demonstrated that both anti-rollover ability and lateral stability are greatly improved by implementing the proposed integrated control scheme. Specifically, the peak of roll angle and the root mean square (RMS) of side slip angle with integrated control are reduced by 38.9 per cent and 47.1 per cent, respectively, relative to those of the passive system.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print