SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Greco M, Bouscasse B, Lugni C. J. Fluids Struct. 2012; 33: 148-179.

Copyright

(Copyright © 2012, Elsevier Publishing)

DOI

10.1016/j.jfluidstructs.2012.05.009

PMID

unavailable

Abstract

A synergic 3-D experimental and numerical investigation is conducted for wave-ship interactions involving the water-on-deck and slamming phenomena. The adopted solver has been developed in Greco and Lugni (in press) and combines (A) a weakly nonlinear external solution for the wave-vessel interactions with (B) a 2-D in-deck shallow-water approximation, which describes water shipping events, and (C) a local analytical analysis of the bottom-slamming phenomenon. This solver can handle regular and irregular sea states and vessels at rest or with limited speed. The experiments examine a patrol ship at rest or with forward speed that is free to oscillate in heave and pitch in regular and irregular waves. In this study, the head-sea regular-wave conditions are examined in terms of (1) response amplitude operators (RAOs) and relative motions, (2) occurrence, features and loads of water-on-deck, bottom-slamming and flare-slamming events and (3) added resistance in waves. A systematic and comprehensive analysis of the phenomena is made available in terms of the Froude number, incoming wavelength-to-ship length ratio and wave steepness for the examined ship geometry. The main parameters that affect the global and local quantities are identified and possible danger in terms of water-on-deck severity and structural consequences are determined. Different slamming behaviors were identified, depending on the spatial location of the impact on the vessel: single-peak, church-roof and double-peak behaviors. A bottom-slamming criterion, using the Ochi's (1964) velocity condition and the Greco and Lugni's (2012) pressure condition, is assessed. A statistical analysis of more than 100 events is needed for the bottom-slamming pressure peaks. The numerical solver is promising. The major discrepancies with the experiments are discussed, and the importance of viscous hull damping and flare impact for the most violent conditions is emphasized. Inclusion of these effects improved the numerical solution. 2012 Elsevier Ltd.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print