SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Gropp KM, Pickett W, Janssen I. Int. J. Behav. Nutr. Phys. Act. 2012; 9(1): 124.

Copyright

(Copyright © 2012, Holtzbrinck Springer Nature Publishing Group - BMC)

DOI

10.1186/1479-5868-9-124

PMID

23067247

Abstract

BACKGROUND: Active transportation to school is a method by which youth can build physical activity into their daily routines. We examined correlates of active transportation to school at both individual- (characteristics of the individual and family) and area- (school and neighborhood) levels amongst youth living within 1 mile (1.6 km) of their school. METHODS: Using the 2009/10 Canadian Health Behaviour in School-Aged Children (HBSC) survey, we selected records of students (n = 3 997) from 161 schools that resided in an urban setting and lived within 1 mile from their school. Student records were compiled from: (1) individual-level HBSC student questionnaires; (2) area-level administrator (school) questionnaires; and (3) area-level geographic information system data sources. The outcome, active transportation to school, was determined via a questionnaire item describing the method of transportation that individual students normally use to get to school. Analyses focused on factors at multiple levels that potentially contribute to student decisions to engage in active transportation. Multi-level logistic regression analyses were employed. RESULTS: Approximately 18% of the variance in active transportation was accounted for at the area-level. Several individual and family characteristics were associated with engagement in active transportation to school including female gender (RR vs. males = 0.86, 95% CI: 0.80-0.91), having >=2 cars in the household (RR vs. no cars = 0.87, 0.74-0.97), and family socioeconomic status (RR for 'not well off' vs. 'very well off' = 1.14, 1.01-1.26). Neighborhood characteristics most strongly related to active transportation were: the length of roads in the 1 km buffer (RR in quartile 4 vs. quartile 1 = 1.23, 1.00-1.42), the amount of litter in the neighborhood (RR for 'major problem' vs. 'no problem' = 1.47, 1.16-1.57), and relatively hot climates (RR in quartile 4 vs. quartile 1 = 1.33 CI, 1.05-1.53). CONCLUSION: Engagement in active transportation to school was related to multiple factors at multiple levels. We identified gender, perception of residential neighborhood safety, the percentage of streets with sidewalks, and the total length of roads as the most important correlates of active transportation to school.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print