SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Gong X, Gu Z, Li Z. Proc. Inst. Mech. Eng. Pt. D J. Automobile Eng. 2012; 226(10): 1325-1339.

Copyright

(Copyright © 2012, Institution of Mechanical Engineers, Publisher SAGE Publishing)

DOI

10.1177/0954407012442295

PMID

unavailable

Abstract

A surrogate model-based aerodynamic shape optimization method applied to the wind deflector of a tractor-trailer is presented in this paper. The aerodynamic drag coefficient of the tractor-trailer with and without the wind deflector subjected to crosswinds is analyzed. The numerical results show that the wind deflector can decrease drag coefficient. Four parameters are used to describe the wind deflector geometry: width, length, height, and angle. A 30-level design of experiments study using the optimal Latin hypercube method was conducted to analyze the sensitivity of the design variables and build a database to set up the surrogate model. The surrogate model was constructed based on the Kriging interpolation technique. The fitting precision of the surrogate model was examined using computational fluid dynamics and certified using a surrogate model simulation. Finally, a multi-island genetic algorithm was used to optimize the shape of the wind deflector based on the surrogate model. The tolerance between the results of the computational fluid dynamics simulation and the surrogate model was only 0.92% when using the optimal design variables, and the aerodynamic drag coefficient decreased by 4.65% compared to the drag coefficient of the tractor-trailer installed with the original wind deflector. The effect of the optimal shape of the wind deflector was validated by computational fluid dynamics and wind tunnel experiment.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print