SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Francombe J, Mason R, Dewhirst M, Bech S. J. Acoust. Soc. Am. 2013; 133(5): 3367.

Affiliation

Dept. of Music and Sound Recording, Inst. of Sound Recording, Univ. of Surrey, Guildford, Surrey GU2 7XH, United Kingdomj.francombe@surrey.ac.uk.

Copyright

(Copyright © 2013, American Institute of Physics)

DOI

10.1121/1.4805762

PMID

23655099

Abstract

As devices that produce audio become more commonplace and increasingly portable, situations in which two competing audio programs are present occur more regularly. In order to support the design of systems intended to mitigate the effects of interfering audio (including sound field control, noise cancelation or source separation systems), it is desirable to model the perceived distraction in such situations. Distraction ratings were collected for a range of audio-on-audio interference situations including various target and interferer programs at three interferer levels, with and without road noise. Time-frequency target-to-interferer ratio (TIR) maps of the stimuli were created using a simple auditory model. A number of feature sets were extracted from the TIR maps, including combinations of mean, standard deviation, minimum and maximum TIR taken across the duration of the program item. In order to predict distraction ratings from the features, linear regression models were produced. The models were evaluated for goodness-of-fit (RMSE) and generalizability (using a K-fold cross-validation procedure). The best model performed well, with almost all predictions falling within the 95% confidence intervals of the perceptual data. A validation data set was used to test the model, suggesting areas for future improvement.


Keywords: Driver distraction;


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print