SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Brown T, Lee JD, McGehee DV. Hum. Factors 2001; 43(3): 462-482.

Affiliation

Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City 52242, USA.

Copyright

(Copyright © 2001, Human Factors and Ergonomics Society, Publisher SAGE Publishing)

DOI

unavailable

PMID

11866201

Abstract

Collision warning systems offer a promising approach to mitigate rear-end collisions, but substantial uncertainty exists regarding the joint performance of the driver and the collision warning algorithms. A simple deterministic model of driver performance was used to examine kinematics-based and perceptual-based rear-end collision avoidance algorithms over a range of collision situations, algorithm parameters, and assumptions regarding driver performance. The results show that the assumptions concerning driver reaction times have important consequences for algorithm performance, with underestimates dramatically undermining the safety benefit of the warning. Additionally, under some circumstances, when drivers rely on the warning algorithms, larger headways can result in more severe collisions. This reflects the nonlinear interaction among the collision situation, the algorithm, and driver response that should not be attributed to the complexities of driver behavior but to the kinematics of the situation. Comparisons made with experimental data demonstrate that a simple human performance model can capture important elements of system performance and complement expensive human-in-the-loop experiments. Actual or potential applications of this research include selection of an appropriate algorithm, more accurate specification of algorithm parameters, and guidance for future experiments.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print