SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Viirre E. Med. Hypothesis Discov. Innov. Ophthalmol. 2014; 3(1): 31-37.

Affiliation

Department of Neurosciences, School of Medicine, University of California, San Diego, CA 92037, USA.

Copyright

(Copyright © 2014, International Virtual Ophthalmic Research Center)

DOI

unavailable

PMID

24804278

PMCID

PMC4010921

Abstract

Alignment of the two eyes is controlled by a finely tuned, fast acting system with components within the brain. Assessment of binocular alignment has classically been done statically. Eye positions are assessed in primary position and at eccentric angles to interpret the functional status of the oculomotor nerves and muscles. However, assessment of dynamic eye alignment, the coordination of the eyes during eye movements, has been less commonly carried out and has not been formalized with population norms. Clinicians are aware of slow eye movement dynamic alignment changes, such as that clinically observed in Intranuclear Ophthalmoplegia. But assessment of eye alignment during rapid eye movements, such as saccade or pursuit has not been part of neuro-ophthalmologic assessment. With the advent of inexpensive, high resolution recording systems, both eyes can be simultaneously recorded and their coordination during movement compared. Thus, we now have an opportunity to provide a laboratory based objective measurement of a gamut of binocular coordination systems. Recent research in humans has demonstrated increased variability of binocular coordination during divided attention. Variability is an interesting statistic that can be sensitively assessed in the velocity domain without extensive gaze position recalibration procedures during recording over long intervals. Variability can thus be used as a robust, long-term eye movement parameter with minimal intrusiveness to the subject. It is proposed that population studies of binocular coordination during eye movements be carried out to determine neurologic norms so that conditions such as brain injury and others can be assessed with a functional tool with objective parameters.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print