SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Liang Y, Lee JD. Transp. Res. C Emerg. Technol. 2014; 38: 146-155.

Copyright

(Copyright © 2014, Elsevier Publishing)

DOI

10.1016/j.trc.2013.10.004

PMID

unavailable

Abstract

Driver cognitive distraction (e.g., hand-free cell phone conversation) can lead to unapparent, but detrimental, impairment to driving safety. Detecting cognitive distraction represents an important function for driver distraction mitigation systems. We developed a layered algorithm that integrated two data mining methods--Dynamic Bayesian Network (DBN) and supervised clustering--to detect cognitive distraction using eye movement and driving performance measures. In this study, the algorithm was trained and tested with the data collected in a simulator-based study, where drivers drove either with or without an auditory secondary task. We calculated 19 distraction indicators and defined cognitive distraction using the experimental condition (i.e., "distraction" as in the drives with the secondary task, and "no distraction" as in the drives without the secondary task). We compared the layered algorithm with previously developed DBN and Support Vector Machine (SVM) algorithms. The results showed that the layered algorithm achieved comparable prediction performance as the two alternatives. Nonetheless, the layered algorithm shortened training and prediction time compared to the original DBN because supervised clustering improved computational efficiency by reducing the number of inputs for DBNs. Moreover, the supervised clustering of the layered algorithm revealed rich information on the relationship between driver cognitive state and performance. This study demonstrates that the layered algorithm can capitalize on the best attributes of component data mining methods and can identify human cognitive state efficiently. The study also shows the value in considering the supervised clustering method as an approach to feature reduction in data mining applications.


Keywords: Driver distraction;

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print