SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Patel P, Bhatt T. Physiol. Rep. 2015; 3(2): e12247.

Affiliation

Department of Physical Therapy, University of Illinois at Chicago, 1919 W, Taylor Street, 4th Floor., Chicago, 60612, Illinois.

Copyright

(Copyright © 2015, American Physiological Society and The Physiological Society, Publisher John Wiley and Sons)

DOI

10.14814/phy2.12247

PMID

25649245

Abstract

We aimed to examine the trial-to-trial changes in the reactive balance response to large magnitude slip-like treadmill perturbations in stance and whether the acquired adaptive changes could be appropriately scaled to a higher intensity perturbation. Seventeen young adults experienced 15 slips for training on level I intensity. Pre- and post-training slips were delivered at a higher intensity (20% > level I). Pre- and post-slip onset stability (at liftoff and touchdown of stepping limb) was measured as the shortest distance of the center of mass (COM) position (XCOM/BOS) and velocity (ẊCOM/BOS) relative to base of support (BOS) from a predicted threshold for backward loss of balance. The number of steps to recover balance, compensatory step length and peak trunk angle were recorded. The post-slip onset stability (at liftoff and touchdown) significantly increased across the trials with no change in preslip stability. Improvement in stability at touchdown positively correlated with an anterior shift in XCOM/BOS but not with ẊCOM/BOS. Consequently, the number of steps required to recover balance declined. The adaptive change in XCOM/BOS resulted from an increase in compensatory step length and reduced trunk extension. Individuals also improved post-slip onset stability on a higher intensity perturbation post-training compared with the pre-training trial. The results support that the CNS adapts to fixed intensity slip-like perturbations primarily by improving the reactive stability via modulation in compensatory step length and trunk extension. Furthermore, based on prior experience from the training phase, the acquired adaptive response can be successfully calibrated to a higher intensity perturbation.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print