SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Mohamed F, Endre ZH, Buckley NA. Br. J. Clin. Pharmacol. 2015; 80(1): 3-19.

Affiliation

Pharmacology, SOMS, Sydney Medical School, University of Sydney, NSW, Australia.

Copyright

(Copyright © 2015, John Wiley and Sons)

DOI

10.1111/bcp.12601

PMID

26099916

Abstract

Acute kidney injury (AKI) has diverse causes and is associated with increased mortality and morbidity. In less developed countries (LDC), nephrotoxic AKI (ToxAKI) is common and mainly due to deliberate ingestion of nephrotoxic pesticides, toxic plants or to snake envenomation. ToxAKI shares some pathophysiological pathways with the much more intensively studied ischaemic AKI, but in contrast to ischaemic AKI, most victims are young, previously healthy adults. Diagnosis of AKI is currently based on a rise in serum creatinine. However this may delay diagnosis because of the kinetics of creatinine. Baseline creatinine values are also rarely available in LDC. Novel renal injury biomarkers offer a way forward because they usually increase more rapidly in AKI and are normally regarded as absent or very low in concentration, thereby reducing the need for a baseline estimate. This should increase sensitivity and speed of diagnosis. Specificity should also be increased for urine biomarkers since many originate from the renal tubular epithelium. Earlier diagnosis of ToxAKI should allow earlier initiation of appropriate therapy. However, translation of novel biomarkers of ToxAKI into clinical practice requires better understanding of non-renal factors in poisoning that alter biomarkers and the influence of dose of nephrotoxin on biomarker performance. Further issues are establishing LDC population-based normal ranges and assessing sampling and analytical parameters for low resource settings. The potential role of renal biomarkers in exploring ToxAKI aetiologies for chronic kidney disease of unknown origin (CKDu) is a high research priority in LDC. Therefore, developing more sensitive biomarkers for early diagnosis of nephrotoxicity is a critical step to making progress against AKI and CKDu in the developing world.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print