SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Foster CD, Hardy WN, Yang KH, King AI, Hashimoto S. Stapp Car Crash J. 2006; 50: 27-51.

Affiliation

Bioengineering Center, Wayne State University, 818 W. Hancock Ave., Detroit, MI 48201, USA. foster@rrb.eng.wayne.edu

Copyright

(Copyright © 2006, Society of Automotive Engineers SAE)

DOI

unavailable

PMID

17311158

Abstract

This study characterizes the response of the human cadaver abdomen to high-speed seatbelt loading using pyrotechnic pretensioners. A test apparatus was developed to deliver symmetric loading to the abdomen using a seatbelt equipped with two low-mass load cells. Eight subjects were tested under worst-case scenario, out-of-position (OOP) conditions. A seatbelt was placed at the level of mid-umbilicus and drawn back along the sides of the specimens, which were seated upright using a fixed-back configuration. Penetration was measured by a laser, which tracked the anterior aspect of the abdomen, and by high-speed video. Additionally, aortic pressure was monitored. Three different pretensioner designs were used, referred to as system A, system B and system C. The B and C systems employed single pretensioners. The A system consisted of two B system pretensioners. The vascular systems of the subjects were perfused. Peak anterior abdominal loads due to the seatbelt ranged from 2.8 kN to 10.1 kN. Peak abdominal penetration ranged from 49 mm to 138 mm. Peak penetration speed ranged from 4.0 m/s to 13.3 m/s. Three cadavers sustained liver injury: one AIS 2, and two AIS 3. Cadaver abdominal response corridors for the A and B system pretensioners are proposed. The results are compared to the data reported by Hardy et al.



Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print