SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Ivarsson J, Viano DC, Lövsund P, Parnaik Y. J. Biomech. Eng. 2003; 125(4): 523-532.

Affiliation

UVa Center for Applied Biomechanics, 1011 Linden Avenue, Charlottesville, VA 22902, USA.

Copyright

(Copyright © 2003, American Society of Mechanical Engineers)

DOI

unavailable

PMID

12968577

Abstract

The revised Federal Motor Vehicle Safety Standard (FMVSS) No. 201 specifies that the safety performance of vehicle upper interiors is determined from the resultant linear acceleration response of a free motion headform (FMH) impacting the interior at 6.7 m/s. This study addresses whether linear output data from the FMH test can be used to select an upper interior padding that decreases the likelihood of rotationally induced brain injuries. Using an experimental setup consisting of a Hybrid III head-neck structure mounted on a mini-sled platform, sagittal plane linear and angular head accelerations were measured in frontal head impacts into foam samples of various stiffness and density with a constant thickness (51 mm) at low (approximately 5.0 m/s), intermediate (approximately 7.0 m/s), and high (approximately 9.6 m/s) impact speeds. Provided that the foam samples did not bottom out, recorded peak values of angular acceleration and change in angular velocity increased approximately linearly with increasing peak resultant linear acceleration and value of the Head Injury Criterion (HIC36). The results indicate that the padding that produces the lowest possible peak angular acceleration and peak change in angular velocity without causing high peak forces is the one that produces the lowest possible HIC36 without bottoming out in the FMH test.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print