SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Cripps NPJ, Cooper GJ. J. Trauma 1996; 40(3 Suppl): S206-11.

Affiliation

Trauma Section, Ministry of Defence, Chemical and Biological Defence Establishment Porton Down, Salisbury, United Kingdom.

Copyright

(Copyright © 1996, Lippincott Williams and Wilkins)

DOI

unavailable

PMID

8606411

Abstract

Primary blast injuries have been recognized since World War I when the most significant reported injury was to the lung. The prevalence of injury to tissues containing air was underlined by the frequency of gut blast injury in underwater explosions mostly reported during World War II. Gut injury is the most likely cause of mortality after the more immediate effects of pulmonary primary blast injury. Effective protection has been achieved for lungs exposed to short duration external blast waves by the placement of stress wave decouplers on to the thoracoabdominal wall in a pig model, thus modifying the energy coupled into the body. A combination of two densities of glass-reinforced plastic plate and Plastazote foam (GRP/PZ) effectively eliminated pulmonary injury in 17 protected animals, compared with the production of severe blast lung in nine unprotected animals (p < 0.001). Partial pulmonary protection was achieved using a plasticized lead and plastazote foam decoupling combination (PbPVC/PZ) in a further group of 10 animals. Peak incident overpressures were not significantly different in any group. Small bowel contusions were highly significantly reduced in the GRP/PZ groups when compared with unprotected animals and with PbPVC protected animals (both p < 0.001); no significant reduction was observed in the summed colonic contusion size in any protected group. Intestinal perforations were also highly significantly reduced in both GRP/PZ groups (p < 0.001). Primary pulmonary blast injury and probably small bowel injury are caused by the propagation of coupled stress waves within the body. Elimination of these injuries implies prevention of stress wave propagation. Because colonic injury was not prevented by the same protection, a different mechanism for the injury is suggested: transmission and propagation of shear waves. These findings have important implications for blast protection and the clinical management of primary blast casualties.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print