SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Panescu D, Kroll MW, Stratbucker RA. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009; 2009: 3191-3194.

Affiliation

NewCardio, Inc., Santa Clara, CA, USA.

Copyright

(Copyright © 2009, IEEE (Institute of Electrical and Electronics Engineers))

DOI

10.1109/IEMBS.2009.5334538

PMID

19964800

Abstract

INTRODUCTION: TASER conducted energy weapons (CEW) deliver electrical pulses that can temporarily incapacitate subjects. The goal of this paper is to analyze the distribution of TASER CEW currents in the heart and surrounding organs and to understand theoretical chances of triggering cardiac arrhythmias, of capturing the vagus and phrenic nerves and producing electroporation of skeletal muscle structures. The CEW operates in either probe mode or drive-stun (direct contact) mode. There is also a hybrid mode in which current is passed from a single probe to either or both of 2 drive-stun electrodes on the weapon, presumed to be in direct contact with the skin. METHODS AND RESULTS: The models analyzed herein describe strength-duration thresholds for myocyte excitation and ventricular fibrillation (VF) induction. Finite element modeling (FEM) was used to approximate current density in the heart for worst-case TASER electrode placement. The FEMs theoretically estimated that maximum TASER CEW current densities in the heart and in neighboring organs are at safe levels. A 3-point deployment mode was compared to probe-mode deployment. The margins of safety for the 3-point deployment were estimated to be as high as or higher than for the probe-mode deployment. CONCLUSION: Numerical modeling estimated that TASER CEWs were expected to be safe when deployed in 3-point mode. In drive-stun, probe-mode or 3-point deployments, the CEWs had high theoretically approximated safety margins for cardiac capture, VF, phrenic or vagus nerve capture and skeletal muscle damage by electroporation.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print