SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Norcross MF, Lewek MD, Padua DA, Shultz SJ, Weinhold PS, Blackburn JT. J. Athl. Train. 2013; 48(6): 748-756.

Affiliation

College of Public Health and Human Sciences, Oregon State University, Corvallis.

Copyright

(Copyright © 2013, National Athletic Trainers' Association (USA))

DOI

10.4085/1062-6050-48.4.09

PMID

23944382

Abstract

Context : Eccentric muscle actions of the lower extremity absorb kinetic energy during landing. Greater total sagittal-plane energy absorption (EA) during the initial impact phase (INI) of landing has been associated with landing biomechanics considered high risk for anterior cruciate ligament (ACL) injury. We do not know whether groups with different INI EA magnitudes exhibit meaningful differences in ACL-related landing biomechanics and whether INI EA might be useful to identify ACL injury-risk potential. Objective : To compare biomechanical factors associated with noncontact ACL injury among sagittal-plane INI EA groups and to determine whether an association exists between sex and sagittal-plane INI EA group assignment to evaluate the face validity of using sagittal-plane INI EA to identify ACL injury risk. Design : Descriptive laboratory study. Setting : Research laboratory. Patients or Other Participants : A total of 82 (41 men, 41 women; age = 21.0 ± 2.4 years, height = 1.74 ± 0.10 m, mass = 70.3 ± 16.1 kg) healthy, physically active individuals volunteered. Intervention(s) : We assessed landing biomechanics using an electromagnetic motion-capture system and force plate during a double-legged jump-landing task. Main Outcome Measure(s) : Total INI EA was used to group participants into high, moderate, and low tertiles. Sagittal- and frontal-plane knee kinematics; peak vertical and posterior ground reaction forces (GRFs); anterior tibial shear force; and internal hip extension, knee extension, and knee varus moments were identified and compared across groups using 1-way analyses of variance. We used a χ(2) analysis to compare male and female representation in the high and low groups. Results : The high group exhibited greater knee-extension moment and posterior GRFs than both the moderate (P < .05) and low (P < .05) groups and greater anterior tibial shear force than the low group (P < .05). No other group differences were noted. Women were not represented more than men in the high group (χ(2) = 1.20, P = .27). Conclusions : Greater sagittal-plane INI EA likely indicates greater ACL loading, but it does not appear to influence frontal-plane biomechanics related to ACL injury. Women were not more likely than men to demonstrate greater INI EA, suggesting that quantification of sagittal-plane INI EA alone is not sufficient to infer ACL injury-risk potential.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print