SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Ma M. Neurobiol. Dis. 2013; 60: 61-79.

Affiliation

Department of Emergency Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Resuscitation Science, University of Pennsylvania, Philadelphia, PA, USA. Electronic address: marek_ma@yahoo.com.

Copyright

(Copyright © 2013, Elsevier Publishing)

DOI

10.1016/j.nbd.2013.08.010

PMID

23969238

Abstract

Axonal injury and degeneration, whether primary or secondary, contribute to the morbidity and mortality seen in many acquired and inherited central nervous system (CNS) and peripheral nervous system (PNS) disorders, such as traumatic brain injury, spinal cord injury, cerebral ischemia, neurodegenerative diseases, and peripheral neuropathies. The calpain family of proteases has been mechanistically linked to the dysfunction and degeneration of axons. While the direct mechanisms by which transection, mechanical strain, ischemia, or complement activation trigger intra-axonal calpain activity are likely different, the downstream effects of unregulated calpain activity may be similar in seemingly disparate diseases. In this review, a brief examination of axonal structure is followed by a focused overview of the calpain family. Finally, the mechanisms by which calpains may disrupt the axonal cytoskeleton, transport, and specialized domains (axon initial segment, nodes, and terminals) are discussed.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print