SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Tompson LA, Bowers KJ. Crime Sci. 2015; 4(1): e8.

Copyright

(Copyright © 2015, Holtzbrinck Springer Nature Publishing Group)

DOI

10.1186/s40163-015-0022-9

PMID

unavailable

Abstract

Although the relationship between weather and crime has been extensively investigated over the past century, little consensus has emerged on the directions of the relationships observed and the mechanisms through which weather might exert its influence. This paper advances an argument that the interpretation of weather, and subsequent activities based on that interpretation, leads to spatio-temporal variations in criminal opportunities, and hence crime. Two hypotheses relating to unseasonal weather and effects of weather on discretionary activities are proposed. Negative binomial regression models are used to test these at the 6-hour shift unit of analysis on street robberies in the Strathclyde region of Scotland. In line with predictions, in this temperate microclimate, more favourable weather in winter (higher temperatures and low wind speeds) was associated with increases in robbery. Partial support was also found for the hypothesis regarding time delineated for discretionary activities. Here, temperature, wind speed and humidity were seen to be significant predictors of robbery during the night shift and weekends. Notably rain was shown to have a negative relationship with robbery at the weekends. This affirms that people are less likely to venture outdoors when it is raining when travel behaviour is optional. Counter to our hypothesised effects, fog was the only variable to significantly interact with public holidays. We conclude by discussing how these analyses might be extended and briefly discuss implications for crime prevention.

KEYWORDS:
Routine activity approach Social contact Discretionary activities Thermal comfort Robbery Micro-temporal Temperature Wind speed


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print