SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Pajcin M, White JM, Banks S, Dorrian J, Paech GM, Grant CL, Johnson K, Tooley K, Aidman E, Fidock J, Kamimori GH, Della Vedova CB. Accid. Anal. Prev. 2019; 126: 160-172.

Affiliation

School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, AUS.

Copyright

(Copyright © 2019, Elsevier Publishing)

DOI

10.1016/j.aap.2018.01.026

PMID

29402402

Abstract

Self-assessment is the most common method for monitoring performance and safety in the workplace. However, discrepancies between subjective and objective measures have increased interest in physiological assessment of performance. In a double-blind placebo-controlled study, 23 healthy adults were randomly assigned to either a placebo (n = 11; 5 F, 6 M) or caffeine condition (n = 12; 4 F, 8 M) while undergoing 50 h (i.e. two days) of total sleep deprivation. In previous work, higher salivary alpha-amylase (sAA) levels were associated with improved psychomotor vigilance and simulated driving performance in the placebo condition. In this follow-up article, the effects of strategic caffeine administration on the previously reported diurnal profiles of sAA and performance, and the association between sAA and neurobehavioural performance were investigated. Participants were given a 10 h baseline sleep opportunity (monitored via standard polysomnography techniques) prior to undergoing sleep deprivation (total sleep time: placebo = 8.83 ± 0.48 h; caffeine = 9.01 ± 0.48 h). During sleep deprivation, caffeine gum (200 mg) was administered at 01:00 h, 03:00 h, 05:00 h, and 07:00 h to participants in the caffeine condition (n = 12). This strategic administration of caffeine gum (200 mg) has been shown to be effective at maintaining cognitive performance during extended wakefulness. Saliva samples were collected, and psychomotor vigilance and simulated driving performance assessed at three-hour intervals throughout wakefulness. Caffeine effects on diurnal variability were compared with previously reported findings in the placebo condition (n = 11). The impact of caffeine on the circadian profile of sAA coincided with changes in neurobehavioural performance. Higher sAA levels were associated with improved performance on the psychomotor vigilance test during the first 24 h of wakefulness in the caffeine condition. However, only the association between sAA and response speed (i.e. reciprocal-transform of mean reaction time) was consistent across both days of sleep deprivation. The association between sAA and driving performance was not consistent across both days of sleep deprivation.

RESULTS show that the relationship between sAA and reciprocal-transform of mean reaction time on the psychomotor vigilance test persisted in the presence of caffeine, however the association was relatively weaker as compared with the placebo condition.

Copyright © 2018 Elsevier Ltd. All rights reserved.


Language: en

Keywords

Alpha-amylase; Biomarker; Caffeine; Performance; Saliva; Sleep deprivation

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print