SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Rocha AP, Choupina HMP, Vilas-Boas MDC, Fernandes JM, Cunha JPS. PLoS One 2018; 13(8): e0201728.

Affiliation

Institute for Systems Engineering and Computers - Technology and Science (INESC TEC), and Faculty of Engineering (FEUP), University of Porto, Porto, Portugal.

Copyright

(Copyright © 2018, Public Library of Science)

DOI

10.1371/journal.pone.0201728

PMID

30075023

Abstract

Human gait analysis provides valuable information regarding the way of walking of a given subject. Low-cost RGB-D cameras, such as the Microsoft Kinect, are able to estimate the 3-D position of several body joints without requiring the use of markers. This 3-D information can be used to perform objective gait analysis in an affordable, portable, and non-intrusive way. In this contribution, we present a system for fully automatic gait analysis using a single RGB-D camera, namely the second version of the Kinect. Our system does not require any manual intervention (except for starting/stopping the data acquisition), since it firstly recognizes whether the subject is walking or not, and identifies the different gait cycles only when walking is detected. For each gait cycle, it then computes several gait parameters, which can provide useful information in various contexts, such as sports, healthcare, and biometric identification. The activity recognition is performed by a predictive model that distinguishes between three activities (walking, standing and marching), and between two postures of the subject (facing the sensor, and facing away from it). The model was built using a multilayer perceptron algorithm and several measures extracted from 3-D joint data, achieving an overall accuracy and F1 score of 98%. For gait cycle detection, we implemented an algorithm that estimates the instants corresponding to left and right heel strikes, relying on the distance between ankles, and the velocity of left and right ankles. The algorithm achieved errors for heel strike instant and stride duration estimation of 15 ± 25 ms and 1 ± 29 ms (walking towards the sensor), and 12 ± 23 ms and 2 ± 24 ms (walking away from the sensor). Our gait cycle detection solution can be used with any other RGB-D camera that provides the 3-D position of the main body joints.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print