SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Yoshimoto S, Amarnath G. Nat. Hazards 2018; 91(2): 491-513.

Copyright

(Copyright © 2018, Holtzbrinck Springer Nature Publishing Group)

DOI

10.1007/s11069-017-3143-5

PMID

unavailable

Abstract

Capturing inundation extent by floods is indispensable for decision making for mitigating hazard. Satellite images have commonly been used for flood mapping, but there are limitations such as unavailability due to satellite's orbital period or cloud cover. Additionally, it would also be beneficial for policy makers to figure out the impact of water management measures such as water storage options on flood mitigation and irrigation water strengthening. Utilization of flood inundation models would support providing information for these demands. In this study, the rainfall-runoff inundation (RRI) model was applied in a flood-prone basin in eastern Sri Lanka, and its applicability was discussed. The RRI model was capable of simulating discharge and inundation extent during flood events, although it should be noted that the model had been calibrated targeting only the flooding period. Satellite-observed rainfall data corrected with a scale factor were able to be used as the model input to simulate long-term trends in runoff just as well as when gauged rainfall data were applied. The calibrated model was also capable of evaluating flood mitigation effects of existing and proposed water storage options by simulating discharge with and without flood capture operations. By reproducing long-term inflow to the storage facilities using satellite rainfall data, it was possible to determine that water would reach the maximum level of the proposed storage facilities even during low-rainfall years.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print