SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Ou S, Park H, Lee J. Appl. Sci. (Basel) 2020; 10(1): e282.

Copyright

(Copyright © 2020, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/app10010282

PMID

unavailable

Abstract

The blind encounter commuting risks, such as failing to recognize and avoid obstacles while walking, but protective support systems are lacking. Acoustic signals at crosswalk lights are activated by button or remote control; however, these signals are difficult to operate and not always available (i.e., broken). Bollards are posts installed for pedestrian safety, but they can create dangerous situations in that the blind cannot see them. Therefore, we proposed an obstacle recognition system to assist the blind in walking safely outdoors; this system can recognize and guide the blind through two obstacles (crosswalk lights and bollards) with image training from the Google Object Detection application program interface (API) based on TensorFlow. The recognized results notify the blind through voice guidance playback in real time. The single shot multibox detector (SSD) MobileNet and faster region-convolutional neural network (R-CNN) models were applied to evaluate the obstacle recognition system; the latter model demonstrated better performance. Crosswalk lights were evaluated and found to perform better during the day than night. They were also analyzed to determine if a client could cross at a crosswalk, while the locations of bollards were analyzed by algorithms to guide the client by voice guidance.


Language: en

Keywords

Android; blind; bollard; crosswalk light; object detection; obstacles; Raspberry Pi

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print