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SafetyLit Editorial

-David Lawrence

Editorial: Brazen, Unseemly, Multiple Acts of Plagiarism 

Background

Preparation for each SafetyLit Weekly Update Bulletin includes identifying recently-

published literature (journal articles, technical reports, conference presentations, 

theses, etc.) that meet the SafetyLit inclusion criteria listed on our FAQ page. This is 

a labor-intensive process involving the examination of metadata sent by FTP from 

major publishers and from some smaller publishers, examining the product of several 

hundred RSS feeds from publishers and other services, searches of several open 

access databases operated by government agencies, and searching Google Scholar. 

Each week I identify between 4000 and 6000 potential items. These are screened and 

500 to 800 new relevant publications are identified. Of these about 80 percent are 

included in the Weekly Update Bulletin and the others are simply added to the 

database. Sometimes the search process also identifies reports and journal articles 

that were published several years ago. These older items are also directly added to the

database.

An Unpleasant Surprise – Identification of Similarities and Duplicates

While conducting the literature searches for the Update to be released on 4 

September, a Google Scholar search using one of my standard search strings (that I 

have used weekly for many years) returned several journal articles with the same (or 

almost the same) title. Upon further examination, it became clear that several of the 

articles are essentially word-for word duplicates of one another. Placed in order of 

publication date, the journal article that was released first was by Eleonore D'Andrea 

et al and published in IEEE Transactions on Intelligent Transportation Systems. 

I focused a second search using the textwords “(Twitter OR Tweet) AND (Traffic OR 

Congestion)” and didn't include a time interval restriction. This identified additional 

items – conference proceedings and theses. If I could find these items with a simple 

(free) Google search, what did the authors of these items find/cite?

At the end of this commentary I will include an annotated bibliography with 

reference lists of the publications on this Twitter/Traffic topic.

Reader Response – Another Unpleasant Surprise

While I was pleased to learn that the Weekly Update has a readership that is 

considerably wider than the mailing list subscribers; the first editorial precipitated a 

flurry of email messages to me from university professors who acted as thesis 

supervisors, university deans, journal editors, journal publishers, and many others 

who were only peripherally (if that) involved. In almost every case the writer was 
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upset that: 1) their publication or that of an acquaintance had been listed among items

that potentially involved plagiarism;  2) I had not assigned blame; or 3) my definition 

of plagiarism was too broad. I replied with both an apology and an explanation to 

those directly involved as authors, editors, or supervisors.

With only four positive messages, the remaining 60+ messages were polite 

complaints or angry threats. I was accused of slander, liable, being a busybody, 

having insulted naïve and overworked students, being gutless because I wouldn't 

name who I thought was a plagiarist and who was a victim, and more. There were 

quite a few researchers who said that some copying was OK because the later articles 

were being published in open access journals and most of the world could not afford 

to read expensive journals. Others said that there were only a few ways to state 

something in the English and that coincidences of similar phrasing were likely to 

occur because of the expanding body of literature. 

My response to the criticisms

In my first two commentaries (now removed from the SafetyLit Update Bulletins and

replaced by this document) I pointed out that some of the articles were clearly word-

for-word plagiarism by any definition. Further evidence of overt copying is: while the

authors of the D'Andrea article used tweet-words that were in their native Italian 

language, the later articles also contained the same terms and weights assigned to the 

terms. Authors of these later-published articles (judging from their authors' names 

and their institutions) do not seem to have any connection to Italy. 

While I did point out which journal article was published first, I did not accuse any 

author of plagiarism. Upon reflection, I realize that the date of publication (who was 

first to print) is only one indicator in assessing plagiarism from original thought and 

that word-for-word copying, clearly the most egregious form, is not the only way to 

plagiarize another's intellectual product. Presentations at conferences, the release of 

drafts to ArXive and similar preprint repositories, etc. make determination of first 

release beyond my ability and outside my role and responsibilities. Determining 

plagiarist from victim isn't my duty. Investigating such things is the role of journal 

editors and graduate thesis supervisors. As curator of the SafetyLit database and 

update service it is my role to identify literature relevant to all safety issues and to 

index it. In my first editorial in 19 years I commented about my surprise and 

annoyance with having found multiple nearly identical articles.

Further thoughts

I believe that this is an important issue – much larger than the articles and theses 

discussed here. It is an issue that must be addressed. The fact that plagiarism is 

accepted or even encouraged by some journal publishers will require an effort by the 

publishers of reputable journals, their editors, universities, and others to solve this 

problem. Consumer product patents and book, music, and video copyrights are all 

addressed (with uneven success) by international treaties. While there are very 

serious attempts to address patent and copyright theft, there is little organized effort 
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to handle academic intellectual property theft and, I suggest, as a result, the theft of 

academic reputation. 

What can be done about Plagiarism?

• How thoroughly should an author conduct a literature search to learn what came 

before?

• When can an author not cite earlier works on similar topics?

• Does an author's knowledge of earlier, un-cited work falsely suggest that the recent 

author's idea is original?

• What about the uncredited “borrowing” of an approach to a problem or a methodology?

• The use of plagiarism detection software is not universally used by editors and 

professors. Why?

• How severely should undergraduate students be penalized when they ignore simple 

rules of proper citation? 

• How severely should graduate students be penalized when they omit key publications 

from the reference lists of their theses but use ideas presented in earlier publications?

• Should thesis supervisors require that students present a comprehensive listing of the 

product of their literature search and a rationale for items not referenced?

• What penalty should a university assign to academic authors who are found to have 

used without credit the intellectual property of another?

• There are journals with policies that restrict the number of sources allowed in a 

reference list. How does this affect proper crediting of the intellectual products of 

others?

I believe that even with the most obscure topics, someone else deserves credit for 

inspiring later work. 

In my own work I have been pleased to liberally use the brilliance of those who came

before me but I acknowledge and reference those earlier ideas and I quote when the 

earlier, eloquent word use is too good to paraphrase. Perhaps, I could be accused of 

taking my citation philosophy too far because my own thesis contains more than 400 

references. 

I welcome comments on this topic. davidl@safetylit.org

The following annotated bibliography may be interesting to those who would like to 

further examine the genealogy of scholarly literature on traffic and Twitter. Please 

pay particular attention to the first item from 2015 and the first four items from 2016.

mailto:davidl@safetylit.org
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Real-time sensing of traffic information in Twitter messages

Type Thesis

Author Sara Filipa Lemos de Carvalho

URL https://repositorio-aberto.up.pt/bitstream/10216/58384/1/000143724.pdf

Place Porto, Portugal

Date 2010

Library
Catalog
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University Universidade do Porto, Faculdade de Engenharia

Abstract

Traffic issues affect the mobility of many people and the dynamics of the big urban centers. 

The study of the traffic urban networks is of great importance for the improvement routes and 

traffic flow. This document intends to introduce a new source of information that can be 

helpful in the traffic scene analysis: microblogging messages. This new source surpasses some 

of the disadvantages of traditional traffic sensors, like area coverage and the costs of 

installation and maintenance. The problem in focus in this study is to investigate whether 

information can be found, in microblogging messages, that is relevant to the traffic study. The 

microblogging platform used to collect the messages was Twitter and the objective was to 

retrieve messages shared by individual users, in opposite to official sources like news agencies.

The approach followed to solve the problem was to address it as a text classification problem 

using SVMs. The solution was divided into two main iterations of built and improvement of 

two classification models (bootstrapping strategy) to capture traffic messages. In each phase, 

for each model, the results achieved were registered and the evaluation measures were 

calculated and compared. Also, the improvements made from one phase to the other were 

registered. In the end, the two classification models were able to capture a generic traffic 

message with a precision of more than 80% and a traffic message shared by an individual user 

with a precision of approximately 50%. In conclusion, the objectives were achieved and the 

results were considered satisfactory in capturing messages from individual users, although in 

the capture of general traffic messages the results were a success. 
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Abstract This paper presents an initial attempt to use micro-blogging messages posted on Twitter (by 
users in transit) to perform real-time sensing of traffic-related information. We propose a text
classification approach to the problem: we wish to automatically identify traffic-related 
messages posted on Twitter, among the millions of unrelated messages posted by users. 
Given that the fraction of relevant traffic messages on Twitter is extremely low (< 0.05%), 
the main challenges involved at this stage are (i) creating a suitable training set for setting up
the classifier, and (ii) driving the classifier to a reasonable level of precision in identifying 
relevant messages. We opted for a dual-stage bootstrapping strategy for tackling both these 
problems simultaneously. First, we used short message reports that are automatically posted 
on Twitter by certain official news source to compile an initial set of training messages that 
are comparable in contents to the user-generated messages we wish to identify. Then, using a
classifier trained on such robot-sent messages, we process a large collection of Twitter 
messages to identify traffic-related messages set by users, which are then added to the 
training set and are used to train a second version of the classifier. Results show that, despite 
the highly-unbalanced example distribution, we are able to almost double the performance of
the classifier from the first iteration to the second, and that F-measures above 23% in 
identifying relevant traffic-related Twitter messages can be achieved, with little human effort 
involved in creating a training set. 

SafetyLit note: We believe that the inclusion of references in this case falls under fair use. 
Why? 1) This article was published as open access and the journal and copyright owner is 
acknowledged; 2) a link to full text is provided; 3) reproduction of this reference list is 
relevant to a commentary on what is and is not original thought and 4) the items in this 
reference list are part of the data upon which an investigation are based. 
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Abstract

Millions of users share their experiences, thoughts, and interests online, through social media 
sites (e.g., Twitter, Flickr, YouTube). As a result, these sites host a substantial number of user-

contributed documents (e.g., textual messages, photographs, videos) for a wide variety of events 
(e.g., concerts, political demonstrations, earthquakes). In this dissertation, we present techniques 

for leveraging the wealth of available social media documents to identify and characterize events
of different types and scale. By automatically identifying and characterizing events and their 

associated user-contributed social media documents, we can ultimately offer substantial 
improvements in browsing and search quality for event content. 

To understand the types of events that exist in social media, we first characterize a large set of 

events using their associated social media documents. Specifically, we develop a taxonomy of 
events in social media, identify important dimensions along which they can be categorized, and 

http://www.cs.columbia.edu/~hila/hila-thesis-distributed.pdfdetermine the key distinguishing 
features that can be derived from their associated documents. We quantitatively examine the 

computed features for different categories of events, and establish that significant differences 
can be detected across categories. Importantly, we observe differences between events and other 

non-event content that exists in social media. We use these observations to inform our event 
identification techniques. 

To identify events in social media, we follow two possible scenarios. In one scenario, we do not 

have any information about the events that are reflected in the data. In this scenario, we use an 
online clustering framework to identify these unknown events and their associated social media 

documents. To distinguish between event and non-event content, we develop event classification
techniques that rely on a rich family of aggregate cluster statistics, including temporal, social, 

topical, and platform-centric characteristics. In addition, to tailor the clustering framework to the
social media domain, we develop similarity metric learning techniques for social media 

documents, exploiting the variety of document context features, both textual and non-textual. 

In our alternative event identification scenario, the events of interest are known, through user-
contributed event aggregation platforms (e.g., Last.fm events, EventBrite, Facebook events). In 

this scenario, we can identify social media documents for the known events by exploiting known
event features, such as the event title, venue, and time. While this event information is generally 

helpful and easy to collect, it is often noisy and ambiguous. To address this challenge, we 
develop query formulation strategies for retrieving event content on different social media sites. 

Specifically, we propose a two-step query formulation approach, with a first step that uses highly
specific queries aimed at achieving high-precision results, and a second step that builds on these 

high-precision results, using term extraction and frequency analysis, with the goal of improving 
recall. Importantly, we demonstrate how event-related documents from one social media site can

be used to enhance the identification of documents for the event on another social media site, 
thus contributing to the diversity of information that we identify. 

The number of social media documents that our techniques identify for each event is potentially 

large. To avoid overwhelming users with unmanageable volumes of event information, we 
design techniques for selecting a subset of documents from the total number of documents that 

http://www.cs.columbia.edu/~hila/hila-thesis-distributed.pdf


we identify for each event. Specifically, we aim to select high-quality, relevant documents that 
reflect useful event information. For this content selection task, we experiment with several 

centrality-based techniques that consider the similarity of each event-related document to the 
central theme of its associated event and to other social media documents that correspond to the 

same event. We then evaluate both the relative and overall user satisfaction with the selected 
social media documents for each event. 

The existing tools to find and organize social media event content are extremely limited. This 

dissertation presents robust ways to organize and filter this noisy but powerful event 
information. With our event identification, characterization, and content selection techniques, we

provide new opportunities for exploring and interacting with a diverse set of social media 
documents that reflect timely and revealing event content. Overall, the work presented in this 

dissertation provides an essential methodology for organizing social media documents that 
reflect event information, towards improved browsing and search for social media event data. 

Copyright © Hila Becker 
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[AGAV08] Enrique Amigó, Julio Gonzalo, Javier Artiles, and Felisa Verdejo. A com-

parison of extrinsic clustering evaluation metrics based on formal constraints.

Information Retrieval, 2008.

[AH10] Sitaram Asur and Bernardo A. Huberman. Predicting the future with social

media. Technical Report HPL-2010-53, HP Laboratories, 2010.

[Ahn06] David Ahn. The stages of event extraction. In Proceedings of the COL-

ING/ACL 2006 Workshop on Annotating and Reasoning about Time and

Events (ARTE ’06), 2006.

[All02] James Allan, editor. Topic Detection and Tracking: Event-based Information

Organization. Kluwer Academic Publisher, 2002.

[APL98] James Allan, Ron Papka, and Victor Lavrenko. On-line new event detection

and tracking. In Proceedings of the 21st ACM International Conference on

Research and Development in Information Retrieval (SIGIR ’98), 1998.

[BBS05] Mikhail Bilenko, Sugato Basu, and Mehran Sahami. Adaptive product nor-

malization: Using online learning for record linkage in comparison shopping.

In Proceedings of the Fifth IEEE International Conference on Data Mining

(ICDM ’05), 2005.



BIBLIOGRAPHY 168

[BCI+11] Hila Becker, Feiyang Chen, Dan Iter, Mor Naaman, and Luis Gravano. Au-

tomatic identification and presentation of Twitter content for planned events.

In Proceedings of the Fifth International AAAI Conference on Weblogs and

Social Media (ICWSM ’11), 2011.

[Ber02] Pavel Berkhin. Survey of clustering data mining techniques. Technical report,

Accrue Software, 2002.

[BHB11] Edward Benson, Aria Haghighi, and Regina Barzilay. Event discovery in social

media feeds. In Proceedings of the 49th Annual Meeting of the Association for

Computational Linguistics: Human Language Technologies (ACL-HLT ’11),

2011.

[BING11] Hila Becker, Dan Iter, Mor Naaman, and Luis Gravano. Identifying content

for planned events across social media sites. Submitted for publication, 2011.

[BKM06] Mikhail Bilenko, Beena Kamath, and Raymond J. Mooney. Adaptive block-

ing: Learning to scale up record linkage. In Proceedings of the Sixth IEEE

International Conference on Data Mining (ICDM ’06), 2006.

[BM98] Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with

co-training. In Proceedings of the 11th Annual Conference on Computational

Learning Theory (COLT ’98), 1998.

[BM03] Mikhail Bilenko and Raymond J. Mooney. Adaptive duplicate detection us-

ing learnable string similarity measures. In Proceedings of the Ninth ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining

(KDD ’03), 2003.

[BMC07] Hila Becker, Christopher Meek, and David Maxwell Chickering. Modeling

contextual factors of click rates. In Proceedings of the 22nd AAAI Conference

on Artificial Intelligence (AAAI ’07), 2007.



BIBLIOGRAPHY 169

[BNG10] Hila Becker, Mor Naaman, and Luis Gravano. Learning similarity metrics

for event identification in social media. In Proceedings of the Third ACM

International Conference on Web Search and Data Mining (WSDM ’10), 2010.

[BNG11a] Hila Becker, Mor Naaman, and Luis Gravano. Beyond trending topics: Real-

world event identification on Twitter. In Proceedings of the Fifth International

AAAI Conference on Weblogs and Social Media (ICWSM ’11), 2011.

[BNG11b] Hila Becker, Mor Naaman, and Luis Gravano. Selecting quality Twitter con-

tent for events. In Proceedings of the Fifth International AAAI Conference on

Weblogs and Social Media (ICWSM ’11), 2011.

[BNJ03] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet alloca-

tion. Journal of Machine Learning Research, 3:993–1022, 2003.

[BP98] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual

web search engine. In Proceedings of the 7th International World Wide Web

Conference (WWW7), 1998.

[BSR+05] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole

Hamilton, and Greg Hullender. Learning to rank using gradient descent. In

Proceedings of the 22nd International Conference on Machine Learning (ICML

’05), 2005.

[BW03] Susanne Boll and Utz Westermann. MediAEther: An event space for context-

aware multimedia experiences. In Proceedings of the 2003 ACM SIGMM Work-

shop on Experiential Telepresence (ETP ’03), 2003.

[BXNG10] Hila Becker, Bai Xiao, Mor Naaman, and Luis Gravano. Exploiting social links

for event identification in social media. In Proceedings of the Third Annual

Workshop on Search in Social Media (SSM ’10), 2010.

[CKM09] Zhaoqi Stella Chen, Dmitri V. Kalashnikov, and Sharad Mehrotra. Exploiting

context analysis for combining multiple entity resolution systems. In Pro-



BIBLIOGRAPHY 170

ceedings of the 2009 ACM International Conference on Management of Data

(SIGMOD ’09), 2009.

[CL09] Marc Cheong and Vincent Lee. Integrating Web-based intelligence retrieval

and decision-making from the Twitter trends knowledge base. In Proceeding

of the Second ACM Workshop on Social Web Search and Mining (SWSM ’09),

2009.

[CMS09] W. Bruce Croft, Donald Metzler, and Trevor Strohman. Search Engines: In-

formation Retrieval in Practice. Addison-Wesley Publishing Company, 2009.

[CP11] Deepayan Chakrabarti and Kunal Punera. Event summarization using tweets.

In Proceedings of the Fifth International AAAI Conference on Weblogs and

Social Media (ICWSM ’11), 2011.

[CR02] William W. Cohen and Jacob Richman. Learning to match and cluster large

high-dimensional data sets for data integration. In Proceedings of the Eighth

ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining (KDD ’02), 2002.

[CR09] Ling Chen and Abhishek Roy. Event detection from Flickr data through

wavelet-based spatial analysis. In Proceedings of the 18th ACM International

Conference on Information and Knowledge Management (CIKM ’09), 2009.

[CS01] Koby Crammer and Yoram Singer. Pranking with ranking. In Advances in

Neural Information Processing Systems 14 (NIPS ’01), 2001.

[CS08] Riley Crane and Didier Sornette. Robust dynamic classes revealed by mea-

suring the response function of a social system. Proceedings of the National

Academy of Sciences, 105(41):15649–15653, 2008.

[DAR09] Carlotta Domeniconi and Muna Al-Razgan. Weighted cluster ensembles:

Methods and analysis. ACM Transactions on Knowledge Discovery from Data,

2(4):1–40, 2009.



BIBLIOGRAPHY 171

[DDGR07] Abhinandan S. Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram.

Google news personalization: Scalable online collaborative filtering. In Pro-

ceedings of the 16th International World Wide Web Conference (WWW ’07),

2007.

[Dem06] Janez Demšar. Statistical comparisons of classifiers over multiple data sets.

Journal of Machine Learning Research, 7:1–30, 2006.

[DI08] Wisam Dakka and Panagiotis G. Ipeirotis. Automatic extraction of useful facet

hierarchies from text databases. In Proceedings of the IEEE 24th International

Conference on Data Engineering (ICDE ’08), 2008.

[Diw03] Urmila M. Diwekar. Introduction to Applied Optimization. Springer, 2003.

[DK92] Daniel Dayan and Elihu Katz. Media Events: The Live Broadcasting of His-

tory. Harvard University Press, 1992.

[DKJ+07] Jason V. Davis, Brian Kulis, Prateek Jain, Suvrit Sra, and Inderjit S. Dhillon.

Information-theoretic metric learning. In Proceedings of the 24th International

Conference on Machine Learning (ICML’07), 2007.

[DLSL09] Bertrand De Longueville, Robin S. Smith, and Gianluca Luraschi. “OMG,

from here, I can see the flames!”: A use case of mining location based social

networks to acquire spatio-temporal data on forest fires. In Proceedings of the

2009 International Workshop on Location Based Social Networks (LBSN ’09),

2009.

[DNKS10] Nicholas Diakopoulos, Mor Naaman, and Funda Kivran-Swaine. Diamonds in

the rough: Social media visual analytics for journalistic inquiry. In Proceedings

of the IEEE Symposium on Visual Analytics Science and Technology (VAST

’10), 2010.

[DS10] Nicholas Diakopoulos and David A. Shamma. Characterizing debate perfor-

mance via aggregated Twitter sentiment. In Proceedings of the 28th Interna-

tional Conference on Human Factors in Computing Systems (CHI ’10), 2010.



BIBLIOGRAPHY 172
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from this problem. Traffic congestions cost money and time. The existing tools used to help in 

collecting information about traffic are expensive and have limitations. Nowadays, micro-

bloggers are being used widely. It allows people to share information, opinions and stories in 

short messages. Twitter is a very popular micro-blogger. It allows people to share whatever 

they want in 140 characters. Twitter offers a new source of information for variety of topics. 

This research proposes a system to use traffic information shared by Twitter messages (tweets) 

in a real time manner. It uses a customized Part of speech (POS) tagging method for extracting 

information from the tweets. POS is also used for Geo-locating the tweets with custom 

developed locations’ dictionaries. Google Geo-Code API is also used in the geo-locating task. 

It also follows the traffic information sent by @TfLTrafficNews which is an official Twitter 
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implemented. This prototype contains implementation of the proposed POS algorithm and also 

the implementation of the system work flow. The result of the system is a map showing a 

highlighted route. This route is the location (road) mentioned in the tweet. The highlight colour
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comparing it against Google Maps traffic feature. The results could be helpful for future work.
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Twitter is a major social media platform in which users send and read messages ("tweets") of 

up to 140 characters. In recent years this communication medium has been used by those 
affected by crises to organize demonstrations or find relief. Because traffic on this media 

platform is extremely heavy, with hundreds of millions of tweets sent every day, it is difficult 
to differentiate between times of turmoil and times of typical discussion. In this work we 

present a new approach to addressing this problem. We first assess several possible 
"thermostats" of activity on social media for their effectiveness in finding important time 

periods. We compare methods commonly found in the literature with a method from 
economics. By combining methods from computational social science with methods from 

economics, we introduce an approach that can effectively locate crisis events in the mountains
of data generated on Twitter. We demonstrate the strength of this method by using it to locate 

the social events relating to the Occupy Wall Street movement protests at the end of 2011.
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Physical events in the real world are known to trigger reactions and then discussions in 

online social media. Mining these reactions through online social sensors offers a fast and 
low cost way to understand what is happening in the physical world. In some cases, however,

further study of the affected population's emotional state can improve this understanding. In 
our study we analyzed how car commuters react on Twitter while stuck in heavy traffic. We 

discovered that the online social footprint does not necessarily follow a strict linear 
correlation with the volume of a traffic jam. Through our analysis we offer a potential 

explanation: people's mood could be an additional factor, apart from traffic severity itself, 
that leads in fluctuations of the observed reaction in social media. This finding can be 

important for social sensing applications where external factors, like sentiment, also 
contribute on how humans react. We propose a novel traffic-congestion estimation model 

that utilizes the volume of messages and complaints in online social media, based on when 
they happen. We show through experimental evaluation that the proposed model can 

estimate, with higher accuracy, traffic jam severity and compare the results with several 
baselines. The model achieves at least 38% improvement of absolute error and more than 

45% improvement of relative error, when compared with a baseline that assumes linear 
correlation between traffic and social volume. To support our findings we combined data 

from the California Department of Transportation (CALTRANS) and Twitter, for a total of 6 
months, and focused on a major traffic-heavy freeway in Los Angeles, California. 
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Recently, there has been increased interest in quantifying and modeling the impact of 

inclement weather on transportation system performance. One problem that the majority of 

research studies on the topic have faced was the great dependence on weather data merely 

from atmospheric weather stations, which lack information about road surface condition. The 

emergence of social media platforms, such as Twitter and Facebook, provides a new 

opportunity to extract more weather-related data from such platforms. This study had two 

primary objectives: (a) examine whether real-world weather events can be inferred from 

social media data and (b) determine whether including weather variables extracted from 

social media data can improve the predictive accuracy of models developed to quantify the 

impact of inclement weather on freeway traffic speed. To achieve those objectives, weather 

data, Twitter data, and traffic information were compiled for the Buffalo-Niagara, New York, 

metropolitan area as a case study. A method called the Twitter Weather Events Observation 

was then applied to the Twitter data, and the sensitivity and false alarm rate for the method 

was evaluated against real-world weather data. Then, linear regression models for predicting 

the impact of inclement weather on freeway speed were developed with and without the 

Twitter-based weather variables incorporated. The results indicated that Twitter data have a 

relatively high sensitivity for predicting inclement weather (i.e., snow), especially during the 

daytime and for areas with significant snowfall. The results also showed that the 

incorporation of Twitter-based weather variables could help improve the predictive accuracy 

of the models. 
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Social network congestion and vehicle road traffic accident with reference to the source of 

information for the detection of the event, as has been used in recent years. In this paper, we 

analyze the traffic situation and to identify the Twitter stream to provide real-time monitoring 

system. The system according to different search criteria, brings tweets from Twitter. Tweets 

are text-mining operations through the application of techniques, and ultimately lead Rating 

tweets. The traf c incident or not, appropriate class tag is set for each Tweet. The traffic on the

Internet news sites, often in different areas of the Italian road network traffic in real-time 

monitoring system for detection work, and to allow for the real-time traffic incident detection.

We support vector machine is used as a model site, and we are the site of the binary problem 

(non-commercial traffic tweets v) solution has achieved 95.75% accuracy standards. We have 

the distinction of traffic through an external event or not, multiclass classification problems 

and were able to get the value of precision. 

This article may be viewed at: 

http://www.ijmetmr.com/oldecember2015/KJayaShree-ChPrudvini-47.pdf 

SafetyLit note: We believe that the inclusion of references in this case falls under fair use. 

Why? 1) This article was published as open access and the journal and copyright owner is 

acknowledged; 2) a link to full text is provided; 3) reproduction of this reference list is 

relevant to a commentary on what is and is not original thought and 4) the items in this 

reference list are part of the data upon which an investigation are based. 

References 

[1] F. Atefeh and W. Khreich, "A survey of techniques for event detection in Twitter," 

Comput. Intell., vol. 31, no. 1, pp. 132–164, 2015. 

[2] P. Ruchi and K. Kamalakar, "ET: Events from tweets," in Proc. 22nd Int. Conf. World 

Wide Web Comput., Rio de Janeiro, Brazil, 2013, pp. 613–620. 

[3] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee, 

"Measurement and analysis of on- line social networks," in Proc. 7th ACM SIGCOMM Conf.

Internet Meas., San Diego, CA, USA, 2007, pp. 29–42. 

[4] G. Anastasi et al., "Urban and social sensing for sus- tainable mobility in smart cities," in 

Proc. IFIP/IEEE Int. Conf. Sustainable Internet ICTSustainability, Palermo, Italy, 2013, pp. 

1–4. 



[5] A. Rosi et al., "Social sensors and pervasive services: Approaches and perspectives," in 

Proc. IEEE Int. Conf. PERCOM Workshops, Seattle, WA, USA, 2011, pp. 525– 530. 

[6] T. Sakaki, M. Okazaki, and Y.Matsuo, "Tweet analy- sis for real-time event detection and 

earthquake reporting system development," IEEE Trans. Knowl. Data Eng., vol. 25, no. 4, pp.

919–931, Apr. 2013. 

[7] J. Allan, Topic Detection and Tracking: Event-Based Information Organization. Norwell, 

MA, USA: Kluwer, 2002. 

[8] K. Perera and D. Dias, "An intelligent driver guid- ance tool using location based 

services," in Proc. IEEE ICSDM, Fuzhou, China, 2011, pp. 246–251. 

[9] T. Sakaki, Y. Matsuo, T. Yanagihara, N. P. Chandrasiri, and K. Nawa, "Real-time event 

extraction for driving in- formation from social sensors," in Proc. IEEE Int. Conf. CYBER, 

Bangkok, Thailand, 2012, pp. 221–226. 

[10] B. Chen and H. H. Cheng, "A review of the appli- cations of agent technology in traf c 

and transportation systems," IEEE Trans. Intell. Transp. Syst., vol. 11, no. 2, pp. 485–497, 

Jun. 2010. 

[11] A. Gonzalez, L. M. Bergasa, and J. J. Yebes, "Text de- tection and recognition on traf c 

panels from street-level imagery using visual appearance," IEEE Trans. Intell. Transp. Syst., 

vol. 15, no. 1, pp. 228–238, Feb. 2014. 

[12] N. Wanichayapong, W. Pruthipunyaskul, W. Pattara- Atikom, and P. Chaovalit, "Social-

based traf c informa- tion extraction and classi cation," in Proc. 11th Int. Conf. ITST, St. 

Petersburg, Russia, 2011, pp. 107–112. 

[13] P. M. d'Orey and M. Ferreira, "ITS for sustainable mobility: A survey on applications and

impact assessment tools," IEEE Trans. Intell. Transp. Syst., vol. 15, no. 2, pp. 477–493, Apr. 

2014. 

[14] K. Boriboonsomsin, M. Barth, W. Zhu, and A. Vu, "Eco-routing navigation system based

on multisource historical and real-time traf c information," IEEE Trans. Intell. Transp. Syst., 

vol. 13, no. 4, pp. 1694–1704, Dec. 2012. 

[15] J. Hurlock and M. L. Wilson, "Searching twitter: Separating the tweet from the chaff," in

Proc. 5th AAAI ICWSM, Barcelona, Spain, 2011, pp. 161–168. 

Keywords: Twitter-Traffic-Status



Citywide traffic congestion estimation with social media

Type Conference Paper

Author Senzhang Wang

Author Lifang He

Author Leon Stenneth

Author Philip S. Yu

Author Zhoujun Li

URL
http://www.safetylit.org/citations/index.php?
fuseaction=citations.viewdetails&citationIds[]=citconferenceproceeding_390_34

Place New York, NY, USA

Publisher ACM Press

Pages e34

Date 2015

DOI 10.1145/2820783.2820829

Accessed 9/27/2016, 2:27:42 PM

Library
Catalog

www.safetylit.org

Conference
Name

23rd SIGSPATIAL International Conference on Advances in Geographic Information 
Systems

Language en

Abstract

Conventional traffic congestion estimation approaches require the deployment of traffic 

sensors or large-scale probe vehicles. The high cost of deploying and maintaining these 
equipments largely limits their spatial-temporal coverage. This paper proposes an alternative 

solution with lower cost and wider spatial coverage by exploring traffic related information 
from Twitter. By regarding each Twitter user as a traffic monitoring sensor, various real-time 

traffic information can be collected freely from each corner of the city. However, there are 
two major challenges for this problem. Firstly, the congestion related information extracted 

directly from real-time tweets are very sparse due both to the low resolution of geographic 
location mentioned in the tweets and the inherent sparsity nature of Twitter data. Secondly, 

the traffic event information coming from Twitter can be multi-typed including congestion, 
accident, road construction, etc. It is non-trivial to model the potential impacts of diverse 

traffic events on traffic congestion. We propose to enrich the sparse real-time tweets from 
two directions: 1) mining the spatial and temporal correlations of the road segments in 

congestion from historical data, and 2) applying auxiliary information including social 
events and road features for help. We finally propose a coupled matrix and tensor 

factorization model to effectively integrate rich information for Citywide Traffic Congestion 
Eestimation (CTCE). Extensive evaluations on Twitter data and 500 million public passenger

buses GPS data on nearly 700 mile roads of Chicago demonstrate the efficiency and 
effectiveness of the proposed approach.
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Abstract Physical events in the real world are known to trigger reactions and then discussions in online

social media. Mining these reactions through online social sensors offers a fast and low cost 

way to understand what is happening in the physical world. In some cases, however, further 

study of the affected population's emotional state can improve this understanding. In our 

study we analyzed how car commuters react on Twitter while stuck in heavy traffic. We 

discovered that the online social footprint does not necessarily follow a strict linear 

correlation with the volume of a traffic jam. Through our analysis we offer a potential 

explanation: people's mood could be an additional factor, apart from traffic severity itself, that

leads in fluctuations of the observed reaction in social media. This finding can be important 

for social sensing applications where external factors, like sentiment, also contribute on how 

humans react. Ignoring the existence of such factors can lead in reduced quality and accuracy 

of a regression analysis. We propose a novel traffic-congestion estimation model that utilizes 

the volume of messages and complaints in online social media, based on when they happen. 

We show through experimental evaluation that the proposed model can estimate, with higher 

accuracy, traffic jam severity and compare the results with several baselines. The model 

achieves at least 38% improvement of absolute error and more than 45% improvement of 

relative error, when compared with a baseline that assumes linear correlation between traffic 

and social volume. To support our findings we combined data from the California Department

of Transportation (CALTRANS) and Twitter, for a total of 6 months, and focused on a major 

traffic-heavy freeway in Los Angeles, California. 
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Abstract

This study demonstrates the importance of understanding the diffusion process in social 
media such as Twitter as an example of the relationship between new media platforms and 

health promotion interventions. Evidence-informed tweets were developed, pilot tested and 
distributed to all followers of the Ministry of Health's Twitter account with the aim of 

influencing the agenda on road safety in Saudi Arabia. The dissemination pattern and 
influence of this health communication was assessed. We collected 70 tweets into two groups 

(29 intervention tweets and 41 additional supported tweets) extracted from the Tweetreach 
data set and then analysed them using Microsoft Excel and SPSS.Using the concept of 

innovation/imitation as defined in the Bass Model, we classified retweeting by direct 
followers as innovation and retweeting by users who were not followers as imitation. In the 

study, we identify an informative indicator of successful diffusion and propose a novel 
procedure to measure innovation/imitation coefficients (p and q). We also provided a 

statistical procedure for evaluating tweet adoption by innovators (influentials) and imitators. 
In addition, we also assessed the use of message design tools for new media messages. The 

resulting information can be used to improve public health and health promotion 
interventions at the levels of planning, design, implementation and evaluation.
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Abstract Twitter has received much thoughtfulness recently.In this paper, we present a real-time 
monitoring system for traffic event detection from Twitter stream analysis. An important 

characteristic of Twitter is its real-time nature. The system fetches tweets from Twitter by 
using many search criteria; processes tweets, by usinging text mining techniques and then 

performs the classification of tweets. To detect a target event, we devise a classifier of tweets 
based on features like keywords in a tweet, the number of words, and their context. Users are 

using Twitter to report real-life events. It focuses on detecting those events by analyzing these
text stream in Twitter.The characteristics of Twitter make it a non-trivial task.The traffic 

detection system was employed for real-time monitoring of many areas of the road network, 
that allow for detection of traffic events almost in real time. 

Keywords: Twitter, Traffic event detection, tweet classification, text mining, social sensing. 
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Abstract Now a days social networking sites are becoming the real time information channel over time.

With the help of portable devices many users are able to share the real life events on the 

internet. This feature of the social networking sites made them more popular and valuable. 

Basically these social networking sites are used for the maintaining social relationship, 

finding friends and users with the similar interest .The text message shared by user in social 

networks that message is called Status Update Message. In that SUM the text, meta-

information like timestamp, name of the user, geographic coordinates, links of the other 

resources are present. The SUM's considered in a specific area may provide the proper 

information. Social networks is a source of information for event detection such as road 

traffic congestion and car accidents. Existing system present a real-time monitoring system 

for traffic event detection from twitter. The system fetches or collect tweets from twitter and 

then processes tweets using text mining techniques. Lastly performs the classification of 

tweets. The system aim is to assign the appropriate class label to each tweet, whether it is 

related to a traffic event or not. System used the support vector machine as a classification 

model. The proposed system uses the semi-supervised approach, which gives training using 

traffic related dataset. We propose a clustering approach for classification of the tweets in 

traffic related and non- traffic related tweets. We employ a Euclidean distance to calculate the 

similarity between the tweets. 

Keywords: Tweet classification, Traffic event detection, Data mining, text mining, and social 

sensing; Twitter-Traffic-Status

SafetyLit note: We believe that the inclusion of references in this case falls under fair use. 

Why? 1) This article was published as open access and the journal and copyright owner is 

acknowledged; 2) a link to full text is provided; 3) reproduction of this reference list is 

relevant to a commentary on what is and is not original thought and 4) the items in this 

reference list are part of the data upon which an investigation are based. 

References 

1. Eleonora D' Andrea, Pietro Ducange, Beatrice Lazzerini, Member, IEEE, and Francesco 

Marcelloni, Member, IEEE ,"Real-Time Detection of Traffic FromTwitter Stream 

Analysis",IEEE transaction on intelligent transportation system, VOL. 16, NO. 4, AUGUST 

2015. 

2. Rui LI, Kin Hou Lei, Ravi Khadiwala, Kevin Chen-Chuan Chang "TEDAS: a Twitter 

Based Event Detection and Analysis System", IJCSIT 2014. 



3. Harshita Rajwani, Srushti Somvanshi, AnujaUpadhye," Dynamic Traffic Analyzer Using 

Twitter", International Journal of Science and Research (IJSR) 2014. 

4. Vikram Singh and Balwinder Saini "An Effective Tokenization Algorithm for Information 

Retrieval System" CS and IT-CSCP 2014 

5. Maximilian Walther and Michael Kaisser,"Geo-spatial Event Detection in the Twitter 

Stream", P. Serdyukov et al. (Eds.): ECIR 2013, LNCS 7814, pp. 356367, 2013 .springer 

Verlag Berlin Heidelberg 2013. 

6. T. Sakaki, M. Okazaki, and Y.Matsuo, "Tweet analysis for real-time event detection and 

earthquake reporting system development," IEEE Trans. Knowl. Data Eng., vol. 25, no. 4, pp.

919-931, Apr. 2013. 

7. M. Krstajic, C. Rohrdantz, M. Hund, and A. Weiler, "Getting there first: Real-time 

detection of real-world incidents on Twitter" in Proc. 2nd IEEE Work Interactive Vis. Text 

Anal.-Task-Driven Anal. Soc. Media IEEE VisWeek," Seattle, WA, USA, 2012. 

8. A. Schulz, P. Ristoski, and H. Paulheim, " see a car crash: Real-time detection of small 

scale incidents in microblogs," in The Semantic Web: ESWC 2013 Satellite Events, vol. 

7955. Berlin, Germany: Springer- Verlag, 2013, pp. 22-33. 

9. J. Yin, A. Lampert, M. Cameron, B. Robinson, and R. Power, "Using social media to 

enhance emergency situation awareness," IEEE Intell. Syst., vol. 27, no. 6, pp. 52-59, 

Nov./Dec. 2012. 

10. K. Boriboonsomsin, M. Barth, W. Zhu, and A. Vu, "Ecorouting navigation multisource 

historical and real-time traffic information," IEEE Trans. Intell. Transp. Syst., vol. 13, no. 4, 

pp. 1694-1704, Dec. 2012.



UNIETD - assessment of third party data as information source for drivers 
and road operators

Type Journal Article

Author Daniel Elias

Author Friedrich Nadler

Author Ian Cornwell

Author Susan Grant-Muller

Author Thomas Heinrich

Rights Elsevier Publications

Volume 14

Pages 2035-2043

Publication Transport research procedia

ISSN 2352-1465

Date 2016

DOI 10.1016/j.trpro.2016.05.171

Library

Catalog
www.safetylit.org

Language en

Abstract The paper deals with the assessment of third party data such as crowd sourced/social media 

and floating vehicle data as information source for road operators in addition to traditional 

infrastructure-based techniques. For purposes of quality assessment of different types of data 

and available ground truths existing test/evaluation methodologies have been assessed. A new

methodology has been designed for assessment of speeds and travel times using normalized 

(between 0 and 1) quality indicators that can distinguish between "detection rate" and "false 

alarm rate" concepts. In terms of harvesting social media the relevance of social media 

content has been assessed against a range of traffic management requirements. Furthermore 

the level of content that will be available has been estimated as well as commercial sources 

and business models for road authorities. Analyses cover unstructured data from Twitter and 

Facebook both historical data and three months of contemporary data. In addition surveys are 

conducted in England and Austria to retrieve information from the public in terms of which 

social media platforms are commonly used to share information about traffic related 

incidents. 
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Abstract

Emerging Trends and Advanced Technologies for Computational Intelligence Nowadays 

almost everyone has access to mobile devices that offer better processing capabilities and 
access to new information and services, the Web is undoubtedly the best tool for sharing 

content, especially through social networks. Web content enhanced by mobile capabilities, 
enable the gathering and aggregation of information that can be useful for our everyday lives 

as, for example, in urban mobility where personalized real-time traffic information, can 
heavily influence users' travel habits, thus contributing for a better way of living. Current 

navigation systems fall short in several ways in order to satisfy the need to process and reason
upon such volumes of data, namely, to accurately provide information about urban traffic in 

real-time and the possibility to personalize the information presented to users. The work 
presented here describes an approach to integrate, fuse and process tweet messages from 

traffic agencies, with the objective of detecting the geographical span of traffic events, such 
as accidents or road works. Tweet messages are considered in this work given their 

uniqueness, their real time nature, which may be used to quickly detect a traffic event, and 
their simplicity. We also address some imprecisions ranging from lack of geographical 

information, imprecise and ambiguous toponyms, overlaps and repetitions as well as 
visualization to our data set in the UK, and a qualitative study on the use of the approach 

using tweets in other languages, such as Greek. Finally, we present an application scenario, 
where traffic information is processed from tweets massages, triggering personalized 

notifications to users through Google Cloud Messaging on Android smartphones. The work 
presented here is still part of on-going work. Results achieved so far do not address the final 

conclusions but form the basis for the formalization of a domain knowledge along with the 
urban mobility services. 
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Abstract

The effectiveness of traditional incident detection is often limited by sparse sensor coverage, 
and reporting incidents to emergency response systems is labor-intensive. We propose to mine

tweet texts to extract incident information on both highways and arterials as an efficient and 
cost-effective alternative to existing data sources. This paper presents a methodology to 

crawl, process and filter tweets that are accessible by the public for free. Tweets are acquired 
from Twitter using the REST API in real time. The process of adaptive data acquisition 

establishes a dictionary of important keywords and their combinations that can imply traffic 
incidents (TI). A tweet is then mapped into a high dimensional binary vector in a feature 

space formed by the dictionary, and classified into either TI related or not. All the TI tweets 
are then geocoded to determine their locations, and further classified into one of the five 

incident categories. We apply the methodology in two regions, the Pittsburgh and 
Philadelphia Metropolitan Areas. Overall, mining tweets holds great potentials to complement

existing traffic incident data in a very cheap way. A small sample of tweets acquired from the 
Twitter API cover most of the incidents reported in the existing data set, and additional 

incidents can be identified through analyzing tweets text. Twitter also provides ample 
additional information with a reasonable coverage on arterials. A tweet that is related to TI 

and geocodable accounts for approximately 5% of all the acquired tweets. Of those 
geocodable TI tweets, 60-70% are posted by influential users (IU), namely public Twitter 

accounts mostly owned by public agencies and media, while the rest is contributed by 
individual users. There is more incident information provided by Twitter on weekends than 

on weekdays. Within the same day, both individuals and IUs tend to report incidents more 
frequently during the day time than at night, especially during traffic peak hours. Individual 

tweets are more likely to report incidents near the center of a city, and the volume of 
information significantly decays outwards from the center.
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Abstract

The purpose of this study was to analyze the characteristics of traffic information propagation

via Twitter using a keyword analysis and a network analysis. For the keyword analysis, the 
main contents of Twitter messages were identified using a TF-IDF (Term Frequency - Inverse

Document Frequency) model. For the network analysis, the network connectivity among 
Twitter users, including Traffic Information Producers (TIPs), Opinion Leaders (OLs), and 

their followers were measured by estimating the densities and mean distances in their follow 
networks. Based on the keyword analysis result, the words representing traffic conditions 

were revealed as the most influential keywords. In addition, the information regarding traffic 
accident occurrences was found to be most frequently retweeted. As a result of the network 

analysis, MBC news which is one of the biggest newscasts in Korea showed the greatest 
connectivity among TIPs. OLs proved more powerful in information propagation than TIPs. 

Conclusively, there is an apparent demand for establishing strategies to propagate traffic 
information based on the characteristics of Twitter in a more efficient manner. 
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Abstract

The effectiveness of traditional incident detection is often limited by sparse sensor coverage, 

and reporting incidents to emergency response systems is labor-intensive. This research project
mines tweet texts to extract incident information on both highways and arterials as an efficient 

and cost- effective alternative to existing data sources. This research report presents a 
methodology to crawl, process and filter tweets that are accessible by the public for free. 

Tweets are acquired from Twitter using the REST API in real time. The process of adaptive 
data acquisition establishes a dictionary of important keywords and their combinations that can

imply traffic incidents (TI). A tweet is then mapped into a high dimensional binary vector in a 
feature space formed by the dictionary, and classified into either TI related or not. All the TI 

tweets are then geocoded to determine their locations, and further classified into one of the five
incident categories. We apply the methodology in two regions, the Pittsburgh and Philadelphia 

Metropolitan Areas. Overall, mining tweets holds great potentials to complement existing 
traffic incident data in a very cheap way. A small sample of tweets acquired from the Twitter 

API cover most of the incidents reported in the existing data set, and additional incidents can 
be identified through analyzing tweets text. Twitter also provides ample additional information

with a reasonable coverage on arterials. A tweet that is related to TI and geocodable accounts 
for approximately 10% of all the acquired tweets. Of those geocodable TI tweets, the majority 

are posted by influential users (IU), namely public Twitter accounts owned by public agencies 
and media, while a small number is contributed by individual users. There is more incident 

information provided by Twitter on weekends than on weekdays. Within the same day, both 
individuals and IUs tend to report incidents more frequently during the day time than at night, 

especially during traffic peak hours. Individual tweets are more likely to report incidents near 
the center of a city, and the volume of information significantly decays outwards from the 

center. We develop a prototype web application to allow users extract both real-time and 
historical incident information and visualize it on the map. The web application will be tested 

in PennDOT transportation management centers. 
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Abstract

We present a real-time monitoring system for traffic event detection from Twitter stream 

analysis. The system fetches tweets from Twitter according to several search criteria; 

processes tweets. The traffic detection system was employed for real-time monitoring of 

several areas of the road network, allowing for detection of traffic events almost in real time, 

often before online traffic news web sites. We were also able to discriminate if traffic is 

caused by an external event or not. Event detection from social networks analysis is a more 

challenging problem than event detection from traditional media like blogs, emails, etc., 

where texts are well formatted. SUMs are unstructured and irregular texts, they contain 

informal or abbreviated words, misspellings or grammatical errors. SUMs contain a huge 

amount of not useful or meaningless information. In our project, we focus on a particular 

small-scale event, i.e., road traffic, and we aim to detect and analyze traffic events by 

processing users' SUMs belonging to a certain area and road traffic. To this aim, we propose a

system able to fetch, elaborate, a road traffic event. Tweets are up to 140 characters, 

enhancing the real-time and news-oriented nature of the platform. In fact, the life-time of 

tweets is usually very short, thus Twitter is the social network platform that is best suited to 

study SUMs related to real-time events. It detects the traffic events in real-time; and it is 

developed as an event-driven infrastructure, built on an SOA architecture. Keywords: Social 

media; Traffic detection; Text mining; Privacy; Service Oriented Architecture (SOA), 

machine learning, Twitter stream analysis 
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