TY - JOUR PY - 2018// TI - Effects of different snow load arrangements on steel silo roof structures JO - Advances in structural engineering A1 - Gallego, Eutiquio A1 - Fuentes, Jose María A1 - Ramírez-Gómez, Álvaro A1 - Ayuga, Francisco SP - 2507 EP - 2517 VL - 21 IS - 16 N2 - Large diameter steel silos usually require a beam structure to support rooftop inspection gangways and resist loads derived from the snow and wind actions. The existence of localized overloads caused by drifted snow on roofs as a consequence of the wind action has been reported in the literature. European standard EN 1991-1-3 also considers the need of taking into account asymmetric patterns for snow loads calculation. However, conical roofs are not included in the specific list of cases considered by this standard. The present work compares the normal stresses and displacements produced in a conical steel silo roof structure by applying balanced loads distributed on the whole roof and unbalanced loads applied on a roof sector. Experimental measurements and a three-dimensional beam model developed by the authors have been used to predict the stresses and vertical displacements of a metal silo roof structure measuring 18.34 m in diameter. The results show that the existence of an asymmetric load pattern produces higher normal stresses (up to 23%) and vertical displacements (up to 50%) than those derived from balanced loads, for any similar load per beam considered.

Language: en

LA - en SN - 1369-4332 UR - http://dx.doi.org/10.1177/1369433217742526 ID - ref1 ER -