SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Beaulieu PA, Dembsey NA. Fire Safety J. 2008; 43(6): 410-428.

Copyright

(Copyright © 2008, Elsevier Publishing)

DOI

10.1016/j.firesaf.2007.11.008

PMID

unavailable

Abstract

A systematic empirical and analytical study was conducted to directly quantify the effect of enhanced ambient oxygen concentration on flame heat flux at bench scale and its ability to represent large-scale flame heat flux of well-ventilated fires. The Advanced Flammability Measurements Apparatus was used to conduct bench scale horizontal and single wall vertical orientation experiments for black polymethylmethacrylate, propylene gas and black polyoxymethylene. The key aspect of this study was direct experimental measurements of flame heat flux back to the burning surface for 20.9–40% ambient oxygen concentrations over a range of applied heat flux. The total flame heat flux, as well as the radiative and convective components, was experimentally measured with various gages. To gain more insight into the effects of oxygen, the flame emissivity, flame height and flame temperature were measured and used to calculate the radiative and convective components of the flame heat flux. Gas burner experiments were conducted to decouple the solid and gas phase effects of the ambient oxygen. Large scale tests of black polymethylmethacrylate were conducted in a horizontal orientation and literature data was used for single wall vertical orientations for comparison to the bench scale, enhanced oxygen results. The main conclusion is that the flame heat flux in enhanced ambient oxygen bench scale does not simulate large-scale flame heat flux in horizontal orientations but simulates a more severe large-scale geometry (parallel wall) in vertical orientations and is useful for evaluation of materials’ vertical flame spread potential. Keywords: Flame heat flux; Enhanced oxygen; Horizontal burning; Vertical burning; Mass loss flux

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print