SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Bogerd CP, Bruhwiler PA, Heus R. J. Sports Sci. 2008; 26(7): 733-741.

Affiliation

EMPA/Swiss Federal Laboratories for Materials Testing and Research, St. Gallen, Switzerland.

Copyright

(Copyright © 2008, Informa - Taylor and Francis Group)

DOI

10.1080/02640410701787783

PMID

18409104

Abstract

Both radiant and forced convective heat flow were measured for a prototype rowing headgear and white and black cotton caps. The measurements were performed on a thermal manikin headform at a wind speed of 4.0 m . s(-1) (s = 0.1) in a climate chamber at 22.0 degrees C (s = 0.05), with and without radiant heat flow from a heat lamp, coming from either directly above (90 degrees ) or from above at an angle of 55 degrees . The effects of hair were studied by repeating selected measurements with a wig. All headgear reduced the radiant heat gain compared with the nude headform: about 80% for the caps and 95% for the prototype rowing headgear (P < 0.01). Forced convective heat loss was reduced more by the caps (36%) than by the prototype rowing headgear (9%) (P < 0.01). The radiant heat gain contributed maximally 13% to the net heat transfer, with or without headgear, showing that forced convective heat loss is the dominant heat transfer parameter under the chosen conditions. The results of the headgear - wig combinations were qualitatively similar, with lower absolute heat transfer.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print