SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Hayward JS, Hay C, Matthews BR, Overweel CH, Radford DD. J. Appl. Physiol. 1984; 56(1): 202-206.

Copyright

(Copyright © 1984, American Physiological Society)

DOI

unavailable

PMID

6693321

Abstract

To facilitate analysis of mechanisms involved in cold water near-drowning, maximum breath-hold duration (BHD) and diving bradycardia were measured in 160 humans who were submerged in water temperatures from 0 to 35 degrees C at 5 degrees C intervals. For sudden submersion BHD was dependent on water temperature (Tw) according to the equation BHD = 15.01 + 0.92Tw. In cold water (0-15 degrees C), BHD was greatly reduced, being 25-50% of the presubmersion duration. BHD after brief habituation to water temperature and mild, voluntary hyperventilation was more than double that of sudden submersion and was also dependent on water temperature according to the equation BHD = 38.90 + 1.70Tw. Minimum heart rate during both types of submersions (diving bradycardia) was independent of water temperature. The results are pertinent to accidental submersion in cold water and show that decreased breath-holding capacity caused by peripheral cold stimulation reduces the effectiveness of the dive response and facilitates drowning. These findings do not support the postulate that the dive response has an important role in the enhanced resuscitatibility associated with cold water near-drowning, thereby shifting emphasis to hypothermia as the mechanism for this phenomenon.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print