SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Sabes PN, Jordan MI. J. Neurosci. 1997; 17(18): 7119-7128.

Affiliation

Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

Copyright

(Copyright © 1997, Society for Neuroscience)

DOI

unavailable

PMID

9278546

Abstract

A novel obstacle avoidance paradigm was used to investigate the planning of human reaching movements. We explored whether the CNS plans arm movements based entirely on the visual space kinematics of the movements, or whether the planning process incorporates specific details of the biomechanical plant to optimize the trajectory plan. Participants reached around an obstacle, the tip of which remained fixed in space throughout the experiment. When the obstacle and the start and target locations were rotated about the tip of the obstacle, the visually specified task constraints retained a rotational symmetry. If movements are planned in visual space, as indicated from a variety of studies on planar point-to-point movements, the resulting trajectories should also be rotationally symmetric across trials. However, systematic variations in movement path were observed as the orientation of the obstacle was changed. These path asymmetries can be accounted for by a class of models in which the planner reduces the likelihood of collision with the obstacle by taking into account the anisotropic sensitivity of the arm to external perturbations or uncertainty in joint level control or proprioception. The model that best matches the experimental results uses planning criteria based on the inertial properties of the arm.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print