SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Schmidt M. J. Comp. Neurol. 2007; 503(1): 64-84.

Copyright

(Copyright © 2007, John Wiley and Sons)

DOI

10.1002/cne.21366

PMID

unavailable

Abstract

Continuous neurogenesis persists during adulthood in the olfactory midbrain of decapod crustaceans, including spiny lobsters, Panulirus argus. This encompasses generation of projection and local interneurons, whose somata are in the lateral soma cluster (LC) and medial soma cluster (MC), respectively. Both neuronal types originate from immediate precursors labeled by a single injection of BrdU and located in a small proliferation zone within each cluster. The aim of this study was to identify neuroblasts as a source of the dividing cells by multiple injections of BrdU over 2 days. All animals receiving multiple injections had one or a few ‘extra’ BrdU-positive nuclei near the proliferation zones, and these nuclei were significantly larger than nuclei of neurons or BrdU-positive cells in the proliferation zones. Since the defining morphological feature of neuroblasts in preadult neurogenesis in arthropods is being larger than their progeny, these large extra BrdU-positive nuclei represent “putative adult neuroblasts.” Multiple BrdU-injections revealed a clump of small cells enclosing the putative adult neuroblasts in LC and MC, and these cells shared morphological characteristics with newly identified putative glial cells in the soma clusters and perivascular cells in the walls of arterioles. These results on P. argus suggest that adult neurogenesis is based on one adult neuroblast per soma cluster, adult neurogenesis appears to be a continuation of embryonic and larval neurogenesis, and the newly identified clumps of cells surrounding the putative adult neuroblasts might provide them with specific microenvironments necessary for their unusual lifelong proliferative and self-renewal capacity. J. Comp. Neurol. 503:64–84, 2007. © 2007 Wiley-Liss, Inc.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print