SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Chirwa EC, Stephenson RR, Batzer SA, Grzebieta RH. Int. J. Crashworthiness 2010; 15(5): 553-569.

Copyright

(Copyright © 2010, Informa - Taylor and Francis Group)

DOI

10.1080/13588265.2010.504373

PMID

unavailable

Abstract

A review of most of the existing rollover dynamic devices was conducted in view of assessing their flexibility, reliability, repeatability and crash reconstruction potential. The outcomes indicate the Jordan Rollover System (JRS) to offer the better potential with respect to a repeatable dynamic test procedure in all aspects than the Inverted Drop Test, the Dolly Test Procedure SAE J2114 or FMVSS 208, the Controlled Rollover Impact System, the Corkscrew Rollover System, and above all the newly updated FMVSS 216 Roof Crush Resistance Test. The positive attributes of the JRS are that the device as a research tool is flexible and accurate enough to accommodate most prescribed input conditions; it measures dynamic near and far side impact roof crush loads, not possible with other test devices; it has excellent repeatability en par with the National Highway Traffic Safety Administration and the Insurance Institute for Highway Safety dynamic frontal, side and rear impact tests; it is scientifically acceptable and indeed represents an improvement over other dynamic test devices used by the industry; it provides reliable roof crush and roof crush speed comparisons between vehicles; and it measures cumulative roof crush data believed by many experts in rollover to be a function of head–neck system injury severity. In addition, the JRS is a self-contained device that occupies a small footprint to perform controlled tests within industry-accepted laboratory crash test tolerances at a far more reasonable cost than other test devices. It is the best available dynamic test device in terms of assessing the interaction between roof deformation, occupant kinematics and restraint systems. Original equipment manufacturers and associated researchers can use the device to supplement the new FMVSS 216 in this regard. This is particularly so considering that the next phase of the FMVSS 216 is the development of a dynamic procedure. Moreover, the device can be readily used to star rate rollover crashworthiness of vehicles.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print