SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Hudda N, Kostenidou E, Sioutas C, Delfino RJ, Fruin SA. Environ. Sci. Technol. 2011; 45(20): 8691-8697.

Affiliation

Department of Civil and Environmental Engineering, University of Southern California , Los Angeles, California 90089, United States.

Copyright

(Copyright © 2011, American Chemical Society)

DOI

10.1021/es202025m

PMID

21928803

Abstract

In-transit microenvironments experience elevated levels of vehicle-related pollutants such as ultrafine particles. However, in-vehicle particle number concentrations are frequently lower than on-road concentrations due to particle losses inside vehicles. Particle concentration reduction occurs due to a complicated interplay between a vehicle's air-exchange rate (AER), which determines particle influx rate, and particle losses due to surfaces and the in-cabin air filter. Accurate determination of inside-to-outside particle concentration ratios is best made under realistic aerodynamic and AER conditions because these ratios and AER are determined by vehicle speed and ventilation preference, in addition to vehicle characteristics such as age. In this study, 6 vehicles were tested at 76 combinations of driving speeds, ventilation conditions (i.e., outside air or recirculation), and fan settings. Under recirculation conditions, particle number attenuation (number reduction for 10-1000 nm particles) averaged 0.83 ± 0.13 and was strongly negatively correlated with increasing AER, which in turn depended on speed and the age of the vehicle. Under outside air conditions, attenuation averaged 0.33 ± 0.10 and primarily decreased at higher fan settings that increased AER. In general, in-cabin particle number reductions did not vary strongly with particle size, and cabin filters exhibited low removal efficiencies.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print