SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Bernard TE, Matheen F. Int. J. Ind. Ergonomics 1999; 23(5-6): 557-564.

Copyright

(Copyright © 1999, Elsevier Publishing)

DOI

unavailable

PMID

unavailable

Abstract

When a work scenario in protective clothing is a nominal two hours of work followed by a short break, the level of heat stress must be limited to conditions of thermal equilibrium. By comparing changes in maximum sustainable work rate in a fixed environment, differences due to different protective clothing ensembles can be determined. To illustrate this principle, two protective clothing ensembles were examined. The Basic Ensemble was a cotton blend coverall over gym shorts with hard hat, gloves and full face mask respirator. The Enhanced Ensemble added a light weight, surgical scrub suit under the coveralls, plus a hood worn under the hard hat. Five young, acclimated males were the test subjects. Environmental conditions were fixed at Tdb=32[deg]C and Tpwb=26[deg]C. After a physiological steady state was established at a low rate of work, treadmill speed was increased by 0.04 m/s every 5 min. The trial continued until thermal equilibrium was clearly lost. A critical treadmill speed was noted at the point thermal equilibrium was lost for each ensemble and subject. The drop in treadmill speed from the basic to enhanced ensemble was 11%. Based on measured values of average skin temperature and metabolic rate at the critical work rate and estimated values of clothing insulation, the average evaporative resistances for the basic and enhanced ensembles were 0.018 and 0.026 kPa m2/W, respectively.Relevance to industryProtective clothing decisions are based on the need to reduce the risk of skin contact with chemical or physical hazards. Sometimes over-protection of the skin results in a hazard secondary to the skin, such as heat stress. With or without over-protection, protective clothing decisions may affect the level of heat stress and result in lower rates of sustainable work. This paper illustrates the affects of a relatively small change in protective clothing requirements on the ability to work in the heat.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print