SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Figueiro MG, Bullough JD, Parsons RH, Rea MS. J. Circadian Rhythms 2005; 3: 14.

Affiliation

Lighting Research Center, Rensselaer Polytechnic Institute, 21 Union Street, Troy, NY 12180, USA. figuem@rpi.edu

Copyright

(Copyright © 2005, Holtzbrinck Springer Nature Publishing Group - BMC)

DOI

10.1186/1740-3391-3-14

PMID

16336697

PMCID

PMC1326217

Abstract

BACKGROUND: It is well established that the absolute sensitivity of the suprachiasmatic nucleus to photic stimulation received through the retino-hypothalamic tract changes throughout the 24-hour day. It is also believed that a combination of classical photoreceptors (rods and cones) and melanopsin-containing retinal ganglion cells participate in circadian phototransduction, with a spectral sensitivity peaking between 440 and 500 nm. It is still unknown, however, whether the spectral sensitivity of the circadian system also changes throughout the solar day. Reported here is a new study that was designed to determine whether the spectral sensitivity of the circadian retinal phototransduction mechanism, measured through melatonin suppression and iris constriction, varies at night. METHODS: Human adult males were exposed to a high-pressure mercury lamp [450 lux (170 microW/cm2) at the cornea] and an array of blue light emitting diodes [18 lux (29 microW/cm2) at the cornea] during two nighttime experimental sessions. Both melatonin suppression and iris constriction were measured during and after a one-hour light exposure just after midnight and just before dawn. RESULTS: An increase in the percentage of melatonin suppression and an increase in pupil constriction for the mercury source relative to the blue light source at night were found, suggesting a temporal change in the contribution of photoreceptor mechanisms leading to melatonin suppression and, possibly, iris constriction by light in humans. CONCLUSION: The preliminary data presented here suggest a change in the spectral sensitivity of circadian phototransduction mechanisms at two different times of the night. These findings are hypothesized to be the result of a change in the sensitivity of the melanopsin-expressing retinal ganglion cells to light during the night.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print