SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Seidler RD, Noll DC. J. Neurophysiol. 2008; 99(4): 1836-1845.

Affiliation

Division of Kinesiology, Department of Pshychology, University of Michigan, Ann Arbor, Michigan, USA. rseidler@umich.edu

Copyright

(Copyright © 2008, American Physiological Society)

DOI

10.1152/jn.01187.2007

PMID

18272874

Abstract

The acquisition of new motor skills is dependent on task practice. In the case of motor transfer, learning can be facilitated by prior practice of a similar skill. Although a multitude of studies have investigated the brain regions contributing to skill acquisition, the neural bases associated with the savings seen at transfer have yet to be determined. In the current study, we used functional MRI to examine how brain activation differs during acquisition and transfer of a visuomotor adaptation task. Two groups of participants adapted manual aiming movements to three different rotations of the feedback display in a sequential fashion, with a return to baseline display conditions between each rotation. Subjects showed a savings in the rate of adaptation when they had prior adaptive experiences (i.e., positive transfer of learning). This savings was associated with a reduction in activity of brain regions typically recruited early in the adaptation process, including the right inferior frontal gyrus, primary motor cortex, inferior temporal gyrus, and the cerebellum (medial HIII). Moreover, although these regions exhibit activation that is correlated across subjects with the rate of acquisition, the degree of savings at transfer was correlated with activity in the right cingulate gyrus, left superior parietal lobule, right inferior parietal lobule, left middle occipital gyrus, and bilaterally in the cerebellum (HV/VI). The cerebellar activation was in the regions surrounding the posterior superior fissure, which is thought to be the site of storage for acquired internal models. Thus we found that motor transfer is associated with brain activation that typically characterizes late learning and storage. Transfer seems to involve retrieval of a previously formed motor memory, allowing the learner to move more quickly through the early stage of learning.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print