SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Kimura T, Ono S, Kubo T. Int. J. Pept. 2012; 2012: 731293.

Affiliation

Molecular Neurophysiology Group, Neuroscience Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.

Copyright

(Copyright © 2012, Hindawi Publishing)

DOI

10.1155/2012/731293

PMID

22500178

PMCID

PMC3303826

Abstract

Tarantula venom glands produce a large variety of bioactive peptides. Here we present the identification of venom components obtained by sequencing clones isolated from a cDNA library prepared from the venom glands of the Chilean common tarantula, Grammostola rosea. The cDNA sequences of about 1500 clones out of 4000 clones were analyzed after selection using several criteria. Forty-eight novel toxin-like peptides (GTx1 to GTx7, and GTx-TCTP and GTx-CRISP) were predicted from the nucleotide sequences. Among these peptides, twenty-four toxins are ICK motif peptides, eleven peptides are MIT1-like peptides, and seven are ESTX-like peptides. Peptides similar to JZTX-64, aptotoxin, CRISP, or TCTP are also obtained. GTx3 series possess a cysteine framework that is conserved among vertebrate MIT1, Bv8, prokineticins, and invertebrate astakines. GTx-CRISP is the first CRISP-like protein identified from the arthropod venom. Real-time PCR revealed that the transcripts for TCTP-like peptide are expressed in both the pereopodal muscle and the venom gland. Furthermore, a unique peptide GTx7-1, whose signal and prepro sequences are essentially identical to those of HaTx1, was obtained.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print