SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Xu YL, Guo WH. Eng. Struct. 2003; 25(4): 473-486.

Copyright

(Copyright © 2003, Elsevier Publishing)

DOI

10.1016/S0141-0296(02)00188-8

PMID

unavailable

Abstract

This paper presents a framework for performing dynamic analysis of coupled road vehicle and cable-stayed bridge systems under turbulent winds. Road vehicles are idealized as a combination of a number of rigid bodies connected by a series of springs and dampers. A cable-stayed bridge is modeled using the three-dimensional finite element method. The random roughness of the bridge deck is generated from a power spectral density function for the given road condition. Wind forces acting on the bridge, including buffeting forces and self-exciting forces, are simulated in the time domain using a fast spectral representation method, the aerodynamic admittance functions, the aerodynamic coefficients, and the flutter derivatives. The quasi-steady model is employed to generate crosswind forces on the road vehicles. The equations of motion of the coupled road vehicle-bridge system under turbulent winds are assembled using a fully computerized approach. The proposed framework is then applied to a real long span cable-stayed bridge with a group of moving high-sided road vehicles under turbulent winds. The results demonstrate that the proposed framework and the associated computer program can efficiently predict the dynamic response of coupled road vehicle and cable-stayed bridge systems subject to turbulent winds under a normal operation condition.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print