SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Pourzeynali S, Datta TK. J. Bridge Eng. 2005; 10(3): 262-271.

Copyright

(Copyright © 2005, American Society of Civil Engineers, Publisher Scitation)

DOI

10.1061/(ASCE)1084-0702(2005)10:3(262)

PMID

unavailable

Abstract

A fatigue reliability analysis of suspension bridges due to the gustiness of the wind velocity is presented by combining overall concepts of bridge aerodynamics, fatigue analysis, and reliability analysis. For this purpose, the fluctuating response of the bridge deck is obtained for buffeting force using a finite-element method and a spectral analysis in frequency domain. Annual cumulative fatigue damage is calculated using Palmgren-Miner's rule, stress-fatigue curve approach and different forms of distribution for stress range. In order to evaluate the reliability, both first-order second-moment (FOSM) method and full distribution procedure (assuming Weibull distribution for fatigue life) are used to evaluate the fatigue reliability. Probabilities of fatigue failure of the Thomas Bridge and the Golden Gate Bridge for a number of important parametric variations are obtained in order to make some general observations on the fatigue reliability of suspension bridges. The results of the study show that the FOSM method predicts a higher value of the probability of fatigue failure as compared to the full distribution method. Further, the distribution of stress range used in the analysis has a significant effect on the calculated probability of fatigue failure in suspension bridges.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print