SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Chen SR, Cai CS. J. Wind. Eng. Ind. Aerodyn. 2004; 92(12): 991-1024.

Copyright

(Copyright © 2004, Elsevier Publishing)

DOI

10.1016/j.jweia.2004.06.002

PMID

unavailable

Abstract

Currently, there are very few systematic analyses of vehicle performance on bridges in windy environments. There are thus no scientific data to support bridge management in this regard, such as when to close traffic on bridges. This paper presents a framework of vehicle accident analysis model on long-span bridges in windy environments. In the accompanying paper, a three-dimensional analysis of the coupled bridge-vehicle-wind system is developed. Each vehicle is modeled as a combination of several rigid bodies, axle mass blocks, springs, and dampers. Dynamic interaction analysis is then conducted on the vehicle-bridge system to predict the "global" bridge and vehicle dynamic responses without considering accident occurrences. The results of the global bridge-vehicle vibrations serve as the basis for the present accident analysis of the "local" vehicle vibrations. With the global vibrations as inputs of the accident model, the lateral response, yaw response of the vehicle, and the reaction forces of each individual wheel are obtained and the stability condition of the vehicles are analyzed. The vehicle accidents on long-span bridges are then identified with given accident criteria. The developed framework can be used in not only analyzing the vehicle performance on highways and on bridges, but also in predicting useful information for emergency preparedness agencies in developing evacuation plans.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print