SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Sanad AM, Lamont S, Usmani AS, Rotter JM. Fire Safety J. 2000; 35(2): 99-116.

Copyright

(Copyright © 2000, Elsevier Publishing)

DOI

unavailable

PMID

unavailable

Abstract

Modelling the full-scale Fire Tests at Cardington has led to new understanding of the behaviour of structures under fire conditions. Much of this understanding has come from parametric explorations using models verified against the tests. The structural phenomena observed in highly redundant, composite structures, during a compartment fire are dominated by restrained thermal expansion. The large deflections experienced in the structural elements in the region of the fire are almost entirely attributable to thermally induced strains. The mechanisms responsible for producing these large deflections are restrained thermal expansion and thermal bowing. Material degradation and loading are secondary influences. A clear understanding of the response of the structure to an average temperature increase and through depth temperature gradients is essential. This paper discusses the structural response when subjected to different heating regimes obtained by changing the mean temperature and temperature gradient applied in the concrete slab of the composite floor slab system to a computer model of the British Steel restrained beam test.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print