SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Usmani AS, Rotter JM, Lamont S, Sanad AM, Gillie M. Fire Safety J. 2001; 36(8): 721-744.

Copyright

(Copyright © 2001, Elsevier Publishing)

DOI

unavailable

PMID

unavailable

Abstract

This paper presents theoretical descriptions of the key phenomena that govern the behaviour of composite framed structures in fire. These descriptions have been developed in parallel with large scale computational work undertaken as a part of a research project (The DETR-PIT Project, Behaviour of steel framed structures under fire conditions) to model the full-scale fire tests on a composite steel framed structure at Cardington (UK). Behaviour of composite structures in fire has long been understood to be dominated by the effects of strength loss caused by thermal degradation, and that large deflections and runaway resulting from the action of imposed loading on a 'weakened' structure. Thus 'strength' and 'loads' are quite generally believed to be the key factors determining structural response (fundamentally no different from ambient behaviour). The new understanding produced from the aforementioned project is that, composite framed structures of the type tested at Cardington possess enormous reserves of strength through adopting large displacement configurations. Furthermore, it is the thermally induced forces and displacements, and not material degradation that govern the structural response in fire. Degradation (such as steel yielding and buckling) can even be helpful in developing the large displacement load carrying modes safely. This, of course, is only true until just before failure when material degradation and loads begin to dominate the behaviour once again. However, because no clear failures of composite structures such as the Cardington frame have been seen, it is not clear how far these structures are from failure in a given fire. This paper attempts to lay down some of the most important and fundamental principles that govern the behaviour of composite frame structures in fire in a simple and comprehensible manner. This is based upon the analysis of the response of single structural elements under a combination of thermal actions and end restraints representing the surrounding structure.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print