SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Liang C, Cheng X, Yang H, Zhang H, Yuen KK. J. Fire Sci. 2013; 31(6): 511-526.

Copyright

(Copyright © 2013, SAGE Publishing)

DOI

10.1177/0734904113482287

PMID

unavailable

Abstract

Flame spread experiments over poly(methyl methacrylate) slabs with different inclinations were conducted in Hefei (with an altitude of 29.8 m) and Lhasa (with an altitude of 3658.0 m). It is shown that the flame spreads significantly slower in Lhasa than in Hefei. For steep slabs with inclination angles of 75° and 90°, the preheat length in Lhasa is longer than in Hefei, whereas for mild inclinations (30° and 45°), it is slightly shorter in Lhasa than in Hefei. The peak total heat flux received by the fuel surface is lower in Lhasa than in Hefei. The measured flame temperatures did not present significant difference. This is actually caused by the combined effects of combustion inhibition due to the low oxygen concentration and less soot formation caused by lower ambient pressure and oxygen concentration in the plateau region, which result in less heat loss by radiation. Based on the analysis, it is concluded that the slower spread behavior in Lhasa is mainly a result of the lower heat feedback level to the solid surface.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print