SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Shannag MJ, Al-Akhras NM, Mahdawi SF. Struct. Infrastruct. Eng. 2014; 10(5): 604-613.

Copyright

(Copyright © 2014, Informa - Taylor and Francis Group)

DOI

10.1080/15732479.2012.757790

PMID

unavailable

Abstract

A series of 40 lightweight reinforced concrete (LWRC) beams of 1400 mm length and a rectangular cross section of 150 × 200 mm were cast, strengthened and then tested under four-point bending test to study the effectiveness of using externally applied carbon fibre-reinforced polymer (CFRP) composites as a method of increasing the flexural strength of under-reinforced LWRC beams. Parameters investigated include reinforcement ratio, ρ; ρ = 0.55ρb and ρ = 0.27ρb, CFRP sheet length; 600, 800 and 1000 mm, CFRP sheet width; beam width and half-beam width. Three types of strengthening schemes were used: jacketing covers the beam from bottom and two sides with total width of 500 mm, sheets at the tension side with width equal to beam width and sheets with width equal to half-beam width. Test results showed a limited increase in ultimate load-carrying capacity accompanied with some reduction in mid-span deflection for the strengthened beams. Among the strengthening schemes investigated, jacketing was the most effective for strength enhancement (about 41%) with respect to control beam; however, it reduced ductility significantly. An analytical model was proposed for predicting the ultimate load-carrying capacity of LWRC beams strengthened with CFRP composites.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print