SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Hu DY, Meng KP, Yang ZY. Int. J. Crashworthiness 2014; 19(2): 126-138.

Copyright

(Copyright © 2014, Informa - Taylor and Francis Group)

DOI

10.1080/13588265.2013.876147

PMID

unavailable

Abstract

With the limitation of available space inside the aircraft and automotive structure, it is difficult to effectively improve the performance of energy absorber. To overcome this drawback, a fan-shaped deployable energy absorber (FDEA) is developed in this paper and numerical simulation is carried out to study the crushing characteristics of FDEA under quasi-static loading condition. The calculated results show that the crush pattern of FDEA can be divided into three categories: progressive symmetrical collapse, global bending collapse and mixed modes, which have different contribution to the energy absorption. Systematic parametric studies are also implemented with consideration of deployment angle, hinge radius and wall thickness of middle cells.

RESULTS indicate that the energy absorption decreases as the deployment angle increases, but increases with hinge radius and wall thickness. In addition, in consideration of practical application, a finite element model of multi-block is built and compared with single-block model. The specific energy absorption of multi-block is calculated to be higher than that of single-block, though the energy absorption is slightly lower. The outcome of this study can provide a design reference for the use of FDEA as energy absorbers in applications.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print