SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Golas A, Narain R, Lin MC. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2014; 90(4): e042816.

Affiliation

University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.

Copyright

(Copyright © 2014, American Physical Society, Publisher American Institute of Physics)

DOI

unavailable

PMID

25375558

Abstract

With the growth in world population, the density of crowds in public places has been increasing steadily, leading to a higher incidence of crowd disasters at high densities. Recent research suggests that emergent chaotic behavior at high densities-known collectively as crowd turbulence-is to blame. Thus, a deeper understanding of crowd turbulence is needed to facilitate efforts to prevent and plan for chaotic conditions in high-density crowds. However, it has been noted that existing algorithms modeling collision avoidance cannot faithfully simulate crowd turbulence. We hypothesize that simulation of crowd turbulence requires modeling of both collision avoidance and frictional forces arising from pedestrian interactions. Accordingly, we propose a model for turbulent crowd simulation, which incorporates a model for interpersonal stress and acceleration constraints similar to real-world pedestrians. Our simulated results demonstrate a close correspondence with observed metrics for crowd turbulence as measured in known crowd disasters.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print